• / 66
  • 下载费用:10 金币  

机械工程专业英语参考译文.doc

关 键 词:
机械工程专业英语参考译文.doc
资源描述:
机械工程专业英语》参考译文高等学校机械设计制造及其自动化专业新编系列教材(供教师及学生使用)黄运尧 黄 威司徒忠 李翠琼武汉理工大学出版社目录编译者的话………………………………第 1 章 材料和热加工…………………第 1 课 机械学的基本概念…………第 2 课 塑性理论的基本假设………第 3 课 有限元优化的应用…………第 4 课 金属…………………………第 5 课 金属和非金属材料…………第 6 课 塑料和其他材料……………第 7 课 模具的寿命和失效…………第 8 踩 冷加工和热加工……………第 9 踩 铸造…………………………第 10 课 制造中的金属成形工艺…第 11 课 缎选………………………第 12 课 锻造的优点和工作原理…第 13 课焊接………………………第 14 课 热处理……………………第二章 机构和机器原理……………。第 15 课 机构介绍…………………。第 16 课 运动分析………………….第 l7 课 运动的综合………………—第 18 课 凸轮和齿轮………………—第 19 课 螺纹件,紧固件和联接件—第 20 课 减(耐)摩擦轴承…………*第 2l 课 斜齿轮、蜗杆蜗轮和锥齿轮第 22 课 轴、离合器和制动器……—第三章 机床………第 23 课 机床基础第 24 课 车床……第 25 课 牛头刨、钻床和铣床…………第 36 课 磨床和特种金属加工工艺……第四章 切削技术和液压“………………第 27 课 加工基础………………………第 28 课 基本的机械加工参数…………第 29 课 切削参数的改变对温度的影响第 30 课 刀具的磨损…………第 31 课 表面稍整加工机理…第 32 课 极限和公差…………“第 33 课 尺寸控制和表面桔整”第 34 课 自动央具设计………“第 36 课 变速液压装置……………—…………—策 37 课 电液伺服系统…………。……………。第五章 机械电子技术………………………………第 38 课 专家系统……。…………………………第 3D 课 建筑机器人………………………………第 40 课 微机为基础的机器人模拟………………第 41 课 机器人学的定义和机器入系统…………第 42 课 微型计算机基础(1)……………………第 43 课 微型计算机基础(x)……………………第 44 课 可编程控制器……………………………第 45 课 CAD/CAM 计算机辅助设计与制造 …第 46 课 计算机数控和直接数控,CNC 和 DNC第 47 课 加工过程的数控—………………………第 48 课 柔性制造系统……………—……………第仍课 交互式编程系统…………………………第 50 课 在振动分析方面的计算机技术…………策 51 课 压力传感器………………………………第 52 课 反馈元件…………………—……………第 53 课 现代按制理论概述………………………第 54 课 管理上采取了新的措施— 来自福持汽第六章 英文科技文献和专利文献的查阅…………6.1 常见科技文献及其查阅………………………6.2 专利文献概述…………………………………第七章 英文科拉论文写作…………………………7.1 标题与摘要写法………………………………7.2 正文(body)的组织与写法 …………………7.3 致谢、附录及参考文献………………—……参考文献………………………………………………第 1 章 材料和热加工机械学的基本概念功是力乘以该力作用在物体上佼物体移动的距离。功用公斤·米来表示。l 公斤‘米等于 I公斤力作用于物体上使物体移动 1 米的距离。例如,一项工作需要提升一台 300 公斤重的设备到两米半高的卡车上,那么就需要 750 公斤·米的功。由于没有一个人能直接举升别o 公斤重,因此必须使用一种装置去调节所需要的可以控制的作用力。常见的装置是一个斜面一在这个例子中,一个倾斜在地面动卡车之勾的承载斜板.如果斜板有 1G 米长,摩擦力忽略,那么就需要 75 公斤的力将机器该上斜板。总功仍然是 7jN?斤·米 L 用 75 公斤乘以 10 米),但作用力已经被改变,于是乎共所需的最大外力仅仅是 75 公斤。 使所需的作用力减少,同时这个较小的作用力使所通过的距离增加,这样的装且被称为力放大器。机器装且也可放大速度和距离。扫帚就是一个速度和距离放大器的例子。因为它把在手柄上输入的力和距离在扫帚的民部转变成较小的力和较长的距离。由于与输入距离的同样时间里扫帚的尾部走过较大的距离,因此共速度也就增加厂。机器装置除了放大力和距离之外,也能改变运动的方向。效率和机械效益是用来测定机械装置性能的。效率定义为输出的相对有用的机械功,它以占输入功的百分率来表示。效 5P 总是要比 100%小,冈为运动零件之间有皮擦损失。像刚才所举的那部机器的例子那样,如果某些人把该机器治上斜板,他们可能发现那要花84 公斤的力。这 9 公斤的差额就是需去克服滚子和轴承阻力的力。在这种情况下该机器装置将具有 89%的效率。如果他们在没有被子情况下,把冷冻机滑移上斜板,所需的力可能是 215 公斤或更大,那么效率就小于 35%。理想机械效益是忽略摩擦损失并等于掐入力移动的距离除以负载移动的有效距离。作为力放大装置,输入的距离要比负载的距离大,而理想的机械效益是比 1 要大的。在承载斜板例子中,该理想机械效益是 4,因为该输入距离是 10 米,(斜板长度)而有救负载移距是 2.5 米(该负载移动的垂直距离)。斜面就是一个力放大装置。作为速度放大装置,输入距离是要比负载距离小的,而理想的机械效益亦比1 要小。简易改变运动方向的机器装置具有一个等于 1 的理想机械效益。其实际机械效益包括了摩擦损失并等于实际输出力除以实际输入力。在承载斜板例子中的实际机械效益在有滚子条件下,大约是 3.6,无滚子条件下,大约是 1.4。第 2 课 塑性理论的基本假设在金属成形中应用塑性理论的目的是要探索金属成形的塑性变形机理。这样,调研可提供以下的分析和判断:(a)金属的流动性(速度、应变和应变率),(b) 温度和热传导,(c) 材料强度的局部变化或流动应力和(d)应力,成形中的负载、压力和能量。这样变形机理就可提供决断:金屑如何流动,借助塑性成形可如何去获得所希望的几何形状以及用成形方法生产出的零件具有什么样的机械性能。为了建立金属变形的可控制的数字模型(曲线图形) ,作出以下几个简化的但是合理的假设,1)忽略弹性变形。然而当必要时,弹性复原( 例如,弯曲回弹情况>和加工中的弹性弯曲(例如,成形加工精度非常接近公差)定要考虑;2)作为一种连续体来考虑材料变形( 如结晶,而晶间疏松和位错是不加考虑的 );3)单向拉伸或压缩试验与多向变形条件下的流动应力相互有关;4)各向异性和 Baus chl“Bef 效应忽略不计;5)体积保持恒定;6)用简化法来表示摩擦,如用 coulomb7s 定律法或用恒剪切应力法。这将在后面进行讨论。在压缩应力状态下的金属特性更加复杂。这可以从一金属圆柱休试样在两个模板之间被压缩时怎样发生变化的分析中可以看得出来。当工件达到金属的屈服应力的应力状态时,塑性交形就开始发生。当试样高度降低时,试祥随着横截面的增加而内外扩展。这种塑性变形在克服工件和模板的两瑞之间的摩擦力中发生。该金屑变形状态是受到其复杂应力体系所支配。这应力体系可从单一的、单向的到三维的即三向发生变化。有一个由模板施加的应力和有两个由摩擦反力引起的应力。如果模板与工件间无摩擦,工件就在单向压应力下发生屈服,正像其受到拉仲载荷作用时的情形一样。而且压缩的屈服应力跟拉仲屈服应力极端一致。由于摩擦力的存在而改变了这一状况,故需要更高的应力才能引起屈服。为了找到拉伸屈服应力与三向应力状态下产生屈服时的应力值之间的数量关系,已经做了很多尝试。对于所有的金属在三向载荷作用下的各种情况下.包括各种塑性屈服试验情况中均未发现单一的(应力、应变)关系。已经存在的若干个建议使用的塑性屈服理论,其中每一种理论只能在一定的范围内有效。在考虑使用这些理论之前.研究三向应力体系并创立既利用数量关系又利用图解技术的解题方法,那是必要的。对于 Z 维应力状态,最方便而有效的方法就是利用莫尔圆,当研究塑性屈服的各种复杂情况时,你可以很容易地运算和进行处理。第 3 课 有限元优化的应用在结构日益复杂的情况下,当工程师们工作时,他们需要合理的、可靠的、快速而经济的设计工具十多年里,有限元分析法已经成为判别和解决涉及这些复杂设计课题时的最常用方法。因为工程个的大多数设计任务那是可定量的,所以实践上,为了快速找到一些可供选择的设计方案。计算机令繁琐的重复设计过程发生了深刻的变革。但是,即使是现在,许多工程师仍然使用人工的试凑法。这样一种方法使得即使是很简单的设计任务也变得困难,因为通常它要花更长的时间,需要广泛的人一机交互配合,且偏于用设计组的经验来设计。优化设计是以理论数学的方法为基础,改进那些对于工程师来说过于复杂的设计,使其设计过程自动化。如果在一部台式计算机平台上能实现自动优化设计,那就可以节省大量的时间和金钱。优化设计的目的就是要将对象极大化或极小化,例如,重量或基频,主要受到频响和设计参数方向的约束。尺寸和(或) 结构形状决定着优化设计的方法。观察一下作为零件优化设计过程,使它变得更容易理解。第一步,包括预处理分析和后处理分析,正像惯常使用的有限元分析(FEA)和计算机辅助设计(CAD) 程序应用。(CAD 的特点在于根据设计参数建立了课题的几何图形)。第二步,定义优化目标和响应约束。而最后一步,反复自动调节设计作业。优化设计程序将允许工程师们监督该设计步骡和进度,必要时停止设计,改变设计条件和重新开始。一项优化设计程序的功力取决于有效的预处理和分析能力。二维和三维设计的应用既需要自动进行也需要设计参数的结网性能。因为在优化循环过程中,课题的几何条件和网格会改变,所以优化程序必须包含误差估计和自适应控制。修改、重配网格和重新估算模式以期获取特定设计目标的实现是以输入初始设计数据开始的。接着,是规定合适的公差并形成约束条件以获得最优结果,或最后改进设计,解决问题。为了使产品从简单轮廓图形到三维实体模型系统化、系列化,设计者必须广泛接触设计目标和特性约束条件。为了易于确定而利用下列参数作为约束和目标函数的附加特性条件,也格是需要的:重量、体积、位移、应力,应变,频率,翅曲安全系数、温度、温度梯度和热通量。此外,工程师们应该能够通过多学科的不同类型的优化分析使多种约束条件结合起来。例如设计者为了应力分析,可以进行热力分析和加热以变更温度,应可将多种约束条件,诸如最高温度、最大应力和变形联系在一起进行研究,然后规定一个所希望的基本频率范围。目标函数代表着整体模式或部分模式。甚至更重要的是通过说明重量或者成本因索,就应该能反映该模式的各个部分的重要性。当有了其他各种材料,特别是有了塑料的今天,人类为什么仍然要使用如此之多的金屑材料呢?那是有益的吗? 通常使用一种材料,是因为它能提供所需的强度,所需要的其他性能和低廉的费用。外观也是一个重要因甭。金属的主要优点是它们所具有的 35 度和韧性。水泥可能是比较便宜的,并常用于建筑上,但就强度角度来说,即使是水泥仍然是取决于其内里的钢筋。 塑料比较轻并且更能抗腐蚀,但它们通常强度不足。塑料的另一个问题就是利用之后,怎样处理它们。金属物俏:常常可以打碎并循环利用,而塑料只能废弃或烧掉。众所周知,金属在我们的生活中是非常重要的。金属对于工业而言是有巨大的重要性。所有机器和其他工程构造都有金属尽部件,其中一些还只能 g 金同组成。在地球上发现的所有元素中大约三分之二是金属元素。但是并不是所有的金属都能够用于工业上。那些金属一一我们用于工业上的金属·——被称为工程金属。最重要的工程金属那就是铁(Fe)。铁跟碳(c)和其他元素结合形成合金的那些金属,尤其他金属发现有更大的用途。铁与别的某些元素相结合而组成的金属称为黑色金属;此外所有其他金届都称为有色金属。最重要的有色金属是铜[c M),铝(A1) ,沿(Pb) ,锌(zn) ,锡 Isn)。但是使用这些有色金周比使用黑龟金属要少得多,因为黑龟金属便宜得多。然而,并不是所有金属的强度都高,例如铜和铝都颇为脆弱,但如果将铜、铝混合在一起时,结果称为铜、铝合金即铝青铜,这铜铝合金比起纯铝来强度要高得多。合金化是获得下列所需各种特殊性能的一种重要方法:如强度,韧性,抗磨性,磁性,高电阻率或抗腐蚀性。以不同的方法生产不同的合金,但是几乎所有的金属都是以金属矿的形式(铁矿、铜矿等)被发现的。矿石是一种由金属与某些杂质相混合而组成的矿物质。为了用金属矿石来生产出一种盎屈,我们必须将杂质从金属矿中分离出去,那就要靠冶炼来实现。提炼、生产和处理金属的种种方法,各个时代都在研究和发展,以满足工程的需要。这就意味着存在大量的各种各样的金属和有用的金属物质可供选择利用。第 5 课 金属和非金属材料在材料选择时所遇到的最普通的分类问题,大概是这种材料是金属材料还是非金属材料。最普通的金属材料是铁,铜,铝,镁,银,钦,铅,锡和锌以及这些金属的合金,例如:钢,黄铜和青铜。它们具有金属特性:光泽,热传导性和电传导性,有相应的延展性,而某些金属还具有良好磁性。较普遍的非金属有木头,砖,水泥,玻璃,橡胶和塑料。他们性能变化很大,但它们通常几乎没有延展性,脆弱,比金属疏松,而且它们不具有导电性、具有较差的导热性。虽然两大类材料中,很可能金属类材料总是更加重要,但非金属类材料的相对重要性在迅速增强。由于新的非金届材料儿乎是在不断地发明创造之中,这一趋势将确定无疑地继续下去。许多情况下,金属和非金属之间的选择是由所需要性能的考虑原则来确定的,两种材料的性能都能满足需要的时候,总成本就成了决定性因素。一种材料对于另一种材料常常借助于其物理性质来加以区别,例如颜龟、密度、比热、热膨胀系数.电、热传导性能,磁性和熔点。其中某些性能比如电、热传导性、密度,对于物种的确定的用途来说,在选择材料时,其重要性是摆在首位的。报述一种材料在机械应用中的表现的那些性能,对于工程师在设计中选择材料来说,往往更为重栗。这些机械性能关系到该材料在工作中对于各种载荷怎样地起作用。机械性能是材料对所施加的作用力的特性反应(响应)。这些性能主要归结到五大类:强度、硬度、弹性、延展性和韧性。L 强度——是材料抵抗外力作用的能力。升降机的钢丝绳和建筑物的横梁都必须具备这种性能。2.硬度——是材料抵抗穿透和磨损的能力。剪切工具(剪床) 必须能抗磨损。轧钢机上的金属轧辊必须能抗穿透。3.弹性——是材料弹回到原有形状位置的能力。所有的弹性材料都应具备这种性质。4.延展性——材料承受永久变形而无型损的能力。冲压和成形产品必须具备这种性能。5.韧性——是吸收所施力的机械能的能力。强度和延展性决定苔材料的韧性。有轨电车、火车车厢、汽车轴、锤子和类似的产品都需要有韧性。塑料具有特烁的性能。对于某种用途而言,这些性能使得塑料比传统材料更为可取。例如,跟金属相比较,塑料既有优点也有缺点。金屈易受到天机酸的腐蚀,如硫酸和盐酸。塑料能抵抗这些酸的腐蚀,但可被溶 塑料比较轻并且更能抗腐蚀,但它们通常强度不足。塑料的另一个问题就是利用之后,怎样处理它们。金属物俏:常常可以打碎并循环利用,而塑料只能废弃或烧掉。众所周知,金属在我们的生活中是非常重要的。金属对于工业而言是有巨大的重要性。所有机器和其他工程构造都有金属尽部件,其中一些还只能 g金同组成。在地球上发现的所有元素中大约三分之二是金属元素。但是并不是所有的金属都能够用于工业上。那些金属一一我们用于工业上的金属·——被称为工程金属。最重要的工程金属那就是铁(Fe)。铁跟碳(c)和其他元素结合形成合金的那些金属,尤其他金属发现有更大的用途。铁与别的某些元素相结合而组成的金属称为黑色金属;此外所有其他金届都称为有色金属。最重要的有色金属是铜[c M),铝(A1),沿(Pb) ,锌(zn) ,锡 Isn)。但是使用这些有色金周比使用黑龟金属要少得多,因为黑龟金属便宜得多。然而,并不是所有金属的强度都高,例如铜和铝都颇为脆弱,但如果将铜、铝混合在一起时,结果称为铜、铝合金即铝青铜,这铜铝合金比起纯铝来强度要高得多。合金化是获得下列所需各种特殊性能的一种重要方法:如强度,韧性,抗磨性,磁性,高电阻率或抗腐蚀性。以不同的方法生产不同的合金,但是几乎所有的金属都是以金属矿的形式(铁矿、铜矿等)被发现的。矿石是一种由金属与某些杂质相混合而组成的矿物质。为了用金属矿石来生产出一种盎屈,我们必须将杂质从金属矿中分离出去,那就要靠冶炼来实现。提炼、生产和处理金属的种种方法,各个时代都在研究和发展,以满足工程的需要。这就意味着存在大量的各种各样的金属和有用的金属物质可供选择利用。第 5 课 金属和非金属材料在材料选择时所遇到的最普通的分类问题,大概是这种材料是金属材料还是非金属材料。最普通的金属材料是铁,铜,铝,镁,银,钦,铅,锡和锌以及这些金属的合金,例如:钢,黄铜和青铜。它们具有金属特性:光泽,热传导性和电传导性,有相应的延展性,而某些金属还具有良好磁性。较普遍的非金属有木头,砖,水泥,玻璃,橡胶和塑料。他们性能变化很大,但它们通常几乎没有延展性,脆弱,比金属疏松,而且它们不具有导电性、具有较差的导热性。虽然两大类材料中,很可能金属类材料总是更加重要,但非金属类材料的相对重要性在迅速增强。由于新的非金届材料儿乎是在不断地发明创造之中,这一趋势将确定无疑地继续下去。许多情况下,金属和非金属之间的选择是由所需要性能的考虑原则来确定的,两种材料的性能都能满足需要的时候,总成本就成了决定性因素。一种材料对于另一种材料常常借助于其物理性质来加以区别,例如颜龟、密度、比热、热膨胀系数.电、热传导性能,磁性和熔点。其中某些性能比如电、热传导性、密度,对于物种的确定的用途来说,在选择材料时,其重要性是摆在首位的。报述一种材料在机械应用中的表现的那些性能,对于工程师在设计中选择材料来说,往往更为重栗。这些机械性能关系到该材料在工作中对于各种载荷怎样地起作用。机械性能是材料对所施加的作用力的特性反应(响应)。这些性能主要归结到五大类:强度、硬度、弹性、延展性和韧性。L 强度——是材料抵抗外力作用的能力。升降机的钢丝绳和建筑物的横梁都必须具备这种性能。2.硬度——是材料抵抗穿透和磨损的能力。剪切工具(剪床) 必须能抗磨损。轧钢机上的金属轧辊必须能抗穿透。3.弹性——是材料弹回到原有形状位置的能力。所有的弹性材料都应具备这种性质。4.延展性——材料承受永久变形而无型损的能力。冲压和成形产品必须具备这种性能。5.韧性——是吸收所施力的机械能的能力。强度和延展性决定苔材料的韧性。有轨电车、火车车厢、汽车轴、锤子和类似的产品都需要有韧性。塑料具有特烁的性能。对于某种用途而言,这些性能使得塑料比传统材料更为可取。例如,跟金属相比较,塑料既有优点也有缺点。金屈易受到天机酸的腐蚀,如硫酸和盐酸。塑料能抵抗这些酸的腐蚀,但可被溶刑所溶解或引起变形,例如,溶剂四氯化碳与塑料具有同样的碳基。颜色必定只能涂到金属的表面,而它可以服塑料混合为一体。金属比大多数塑料刚性要好,而塑料则非常之轻,通常塑料密度在 o.9—1.8 之间。大多数塑料不易传热导电。塑料能缓慢软化,而当其还是在软的状态时,能容易成形。在某一温度下塑料是处于塑性状态的,这就使塑料具备起道许多其他材料的主要优点。它容许大量生产单位成本低廉的模制式器件,例如,各种容器。于此,若用其他材料则需要大量劳力和往往需要很费钱的加工工艺,比如,切割、成形、加工、装配和装饰。塑料器件可能需要与用其他材料,比如与金属或木材制作的类似的器件加以区别、这不仅是由于塑料的性能不同的原因,也是由于制造塑料产品所用的技术不同所致。这些技术包括注塑模制,吹塑摄制.压模,挤压和真空成形等。对粉末冶金所下的定义是:粉末冶金是制造金属粉末并将单一的、混合的或合金化的粉末通过成形的方法制成产品的技术。这一制造过程可添加或不添加非金属成份;可通过加压或模压成形;可在压制时同时加热或在制造后再进行加热,能使金届粉末形成一个粘结牢固的整体;加热过程中粉末可不熔化,或只有低熔点成分熔化。首先,必须生产合适的粉末。尽管理论上可以用粉末冶金的方法制造任何晶体材料,但在许多情况下,生产合适的粉末已经带来限制,或者是因难于获得足够纯度的粉末或者是因为经济上的原因。选择和配制好粉末并制造好所要生产产品形状的模具后,就把粉末模压成符合尺寸和形状的产品。应用品体生长中的热效应而生产出均匀的结晶体来。利用热和压力的各种结合,某些粉末冶金就是在室温和高压下进行。然而在稍低于任一组分的最低熔点的温度下进行粉末冶金,通常紧跟着的就是施于冷压*在模压过程中,可利用介质的温升,然后是在较高的温度条件下,模压的成形品就从压模中脱出。在热模压过程中,同时施加压力以提高最终的粉末冶金的温度。模具的寿命和失效正确的选择模具材料和模具的制造技术,在很大程度上决定着成形模具的使用寿命。为着某些原因.模具可能不得不更换。例如,由于磨损或塑性变形而使尺寸发生改变,表面损坏、光洁度降低、润滑故随和裂纹即破裂。在热压模撤中,模具失效的主要模式是腐蚀作用、热疲劳、机械疲劳和永久性即塑性变形。腐蚀,通常也叫做模具磨损,实际上模具由于受到压力后模具表面上的材料发生剥落。变形材料的滑移、模具材料的抗磨性,模具表面温度、模具和材料接触表而的相对滑动速度以及接触层的性质,都是影响模具磨损的最主要的因素。热成形加工中会发生热裂效应,热疲劳都发生在模具模腔的表面。由于跟热变形材料接触、就在周期性屈服的模具表而引起了热疲劳。由于温度梯度的急剧变化,这种接触引起表面层的膨胀,而且表面层受到风应力的影响。在温度足够高的时刻,这些压应力可引起表顶层的破坏。当模具表面冷却时,可发生反向应力,因而表面层将处于拉应力状态。这种状态循环往复将引起形成龟裂的模面,那就是作为识别热裂纹的特征。模具破裂或产生裂纹是由于机械疲劳,并且是在模具过载和局部应力高等情况下发生的。在变形加工过程中,由于加载、减载,模具承受着交变应力作用,这就将引起开裂并发生重大破坏。在给定的成形工艺条件下,模具材料的机械性能对模具寿命和模具的损坏影响很大。一般而言,最具影响的性能是取决于加工过程的温度。这样,用于冷却成形加工工艺的模具材料与用于热成形加工的材料有着极大的区别。对于金屑成形加工工艺的小批、单件生产,模具的设计、制造和模具材料的选择是非常重要的。为着提供成本合理和具有令人满意的寿命的模具,必须用合适的模具材料和用现代的制造方法来制造模具。成形加工的经济效益常常是取决于模具寿命和所制造的每件模具的成本,根据上述应用,合适的模具材料的选择取决于以下三方面的因素:(a)与加工工艺本身有关的因素,包括模腔尺寸、所用机器形式和变形速度,毛坯尺寸和温度,要用的模具温度、润滑、生产串和要生产的零件数量。机构和机器原理机构介绍机构的功用是作为机械作用的一个部分从一个刚体到另一个刚体传送即传递运动。一般能用作机构基本零件的机械装置有三种类型:1.齿轮装置。那是在回转轴之间进行接触传动的啮合构件。2.凸轮装置。把输入构件的均匀运动转换成输出构件的非均匀运动的装置。3.平面机构和空间机构也是能使一个点或一个刚体产生机械运动的有用装置。运动链是一个构件系统装置即若干个刚体,它们或者彼此铰接或者互相接触,方式上是允许它们彼此间产生相对运动。如果构件中的某一构件被固定而使任何其他一个构件运动到新的位置将会引起其他各个构件也运动到确定的预期的位置上的话,该系统装置就是一个可约束的运动链。如果构件中的某一构件仍保持固定而使任一运动到达一新的位置而不会使其他各个构件运动到一个确定的预期的位置上的话,则该系统装置是一个非约束运动链。机构或连杆构件是一个可约束的传动链而且是一个从输入到输出以传递运动和(或)力为目的的机械装置。连杆机构是由通常被认为是刚体构件或杆组成的,它们是以销轴铰接的,例如用柱销(圆形的)或棱柱体销轴铰接,以便成形开式或闭式(回环式)的运动链。这样的运动链在至少有一个构件被固定的条件下:(1)如果至少有两个构件能保持运动,就变为机构,(2)如果没有一个构件能够运动,则就成为结构。换句话说,机构是允许其“刚性构件”之间相对运动,而结构则不能。由于连杆机构做成一简单机构而且能设定实现复杂的任务,例如非线性运动和力的传递运动。它们在机构学研究中将受到更多的关注。机构被用于许多许多的机器和装置中。最简单的封闭式的连杆机构就是四杆机构,四杆机构有三个运动构件(加上一个固定构件)并且有四个销轴。连接动力源的构件即原动件,而具有一个移动铰和一个固定铰者叫做输入构件。输出构件将一个移动铰和另一个固定铰连系起来。连接构件即浮动构件将两个移动的铰(回转副)连系起来,因而连接构件就将输入传送到输出。四杆机构若使一个或几个构件无限长而产生某些特殊的构造。曲柄滑块(即曲柄和滑块)机构就是一个四杆机构特例。其以一个滑块替换一个无限长的输出件。内燃机就是建立在这一机构基础上。有着另一种形式的四杆机构,其中滑块是在一运动的构件上导移运动而不是在一固定构件上。这些就被称为曲柄滑块机构的变换,它是其中一个构件(曲柄、连杆或滑块)被固定时形成的。虽然四杆机构和曲柄滑块机构是非常有用而且在成千上万的应用中都可找到。但是我们还看到,这些连杆机构其性能水平的发挥已经受到限制。具有更多构件的连杆机构常常用于更多要求的情况中。然而可以设想多回环的连杆机构的运动常常是更为困难的,特别是当其他零件出现在同一图中的时候。要进行更复杂机构的运动分析:第一步是绘制一等效运动图即示意图。这示意图用于电路图解类似的目的,即仅仅表示机构的主要本质的意图,然而它要体现影响其运动的关键的尺寸。运动图可用两种形式中的一种:一是草图(按比例画出,但放大比例不精确),二是比例准确的运动图(通常用于进一步分析其位置、位移、速度,加速度,力和扭矩传递等等)。为了便于参考,对构件进行顺序编号,(以静止构件编号为 1 开始编写),而回转副则以字母表示。机构运动分析的第二步:画一个图解图,是要确定机构的自由度数。依据自由度,可意指需要若干个独立输入的运动的数目,以确定机构所有的构件相对于地面的位置。人们可以想象存在数以千计的不同类型的连杆机构。你可想象一个袋子包容大量的连杆机构的组元:二杆组,三杆组,四杆组等等,以及构件,回转副,移动副,凸轮随动件,齿轮,齿链,链轮,皮带,皮带轮等等。(球形运动副,螺旋副以及允许三维相对运动的其他连接尚未包括进去,这里,仅仅讨论平行平面内的平面运动)。而且你可以想象一下把这些组元放在一起而形成的各种类连杆机构的可能性。存在如何帮助人们控制所形成这些机构的规律吗?实际上,大多数机构的任务是要求一个单一的输入被传递到一个单一的输出。因此单一自由度的机构是使用最多的一种机构类型。例如,由直觉即可以看出:四杆机构就是一个单一自由度的连杆机构。画运动图和确定机构自由度的过程,就是运动分析和综合过程的第一个阶段。在运动分析中,根据机构的几何形状加上可能知道的其特性(如输入角、速度,角加速度等)来研究确定具体的机构。另一方面,运动综合则是设计一个机构以完成一个所要求的任务的过程。于此,选择新机构的类型和尺寸是运动综合的一个部分。设想相对运动的能力,能推想出之所以这样设计一个机构的原因和对一个具体设计进行改进的能力是一个成功的机构学家的标志。虽然这些能力来自先天的创造性,然而更多的是因为掌握了从实践中提高的技术。运动分析最简单最有用的机构之一是四杆机构。以下论述中的大部分内容集中讨论连杆机构上,而该程序也适用于更复杂的连杆机构。我们已经知道四杆机构具有一个自由度。关于四杆机构,有没有要知道的有用的更多内容呢?的确是有的!这些包括格拉肖夫准则,变换的概念,死点的位置(分歧点),分支机构,传动角,和他们的运动特征,包括位置,速度和加速度。四杆机构可具有一种称作曲柄摇杆机构的形式,一种双摇杆机构,一种双曲柄(拉杆)机构,致于称作哪一种形式的机构,取决于跟机架(固定构件)相连接的两杆的运动范围。曲柄摇杆机构的输入构件,曲柄可旋转通过 360°并连续转动,而输出构件仅仅作摇动(即摇摆的杆件)。作为一个特例,在平行四杆机构中,输入杆的长度等于输出杆的长度,连接杆的长度和固定杆(机架)的长度,也是相等的。其输入和输出都可以作整周转动或者转换成称作反平行四边形机构的交叉结构。格拉肖夫准则(定理)表明:如果四杆机构中,任意两杆之间能作连续相对转动,那么,其最长杆长度与最短杆长度之和就小于或等于其余两杆长度之和。应该注意:相同的四杆机构,可有不同的形式,这取决于哪一根杆被规定作为机架(即作固定杆)。运动变换的过程就是固定机构传动链中的不同的杆件以产生不同的机构运动过程。除了具备关于构件回转范围的知识之外,还要具备如何使机构在制造之前就能“运转”的良好措施,那将是很有用的。哈登伯格(Hartenberg)说到:“运转”是一个术语,其意义是传给输出构件的运动的有效性。它意味着运转平稳,其中能在输出构件中产生一个力或扭矩的最大分力是有效的。虽然最终的输出力或扭矩不仅是连杆几何图形的函数,而且一般也是动力或惯性力的结果,那常常是大到如静态力的几倍。为了分析低速运转或为了易于获得如何能使任一机构“运转”的指数,传动角的概念是非常有用的。在机构运动期间,传动角的值在改变。传动角 0°可发生在特殊位置上。在此特殊位置上输出杆将不运动而与施加到输入杆上的力多大无关。事实上,由于运动副摩擦的影响,一般根据实际经验,用比规定值大的传动角去设计机构。衡量连杆机构传递运动能力的矩阵基础的定义已经研究出来。一个决定性因素的值(它含有对于某个给定机构图形,位置的输出运动变量对输入变量的导数)是该连杆机构在具体位置中的可动性的一个尺度。如果机构具有一个自由度(例如四杆机构),则规定的一个位置参数,如输入角,就将完全确定该机构休止的位置(忽视分支机构的可能性)。我们可研究一个关于四杆机构构件绝对角位置的分析表达式。当分析若干位置和(或)若干不同机构时候,这将是比几何图形分析程序要有用得多,因为该表达式将使自动化计算易于编程。实现机构速度分析的相对速度法即速度多边形是几种有效的方法之一。这端(顶)点代表着机构上所有的点,具有零速度。从该点到速度多边形上的各点画的线代表着该机构上相应各点的绝对速度。一根线连接速度多边形上的任意两点就代表着作为该机构上两个对应的点的相对速度。另外的方法就是瞬时中心法,即瞬心法,该方法是非常有用的而且常常是在复杂连杆机构分析时较快的方法。瞬心是一个点,该点在那一瞬间,机构上的两构件之间不存在相对运动。为了找出已知机构某些瞬心的位置,肯尼迪(Kennedy)三中心理论就非常有用。它是说:彼此相对运动的三个物体的三个瞬心必定是在一直线上。机构各构件的加速度是令人感兴趣的,因为它影响惯性力,继而影响机器零件的应力、轴承载荷、振动和噪音。由于最终的目的是机器和机构惯性力的分析,所有加速度的各分量都应一次性地画在同一坐标系中——机构的固定构件的惯性坐标系中表示出来。应注意的是:相对于固定回转副的回转刚体上的一点加速度分量通常有两个。一个分力方向切于该点的轨迹,其指向与该物体的角加速度方向相同,并被称为切向加速度。它的存在完全是由于角速度的变化率引起的。另一个分量,总是指向物体的回转中心,被称为标准的向心加速度,这个分量由于速度矢量的方向发生改变而存在。运动的综合机构是形成许多机械装置的基本几何结构单元,这些机械装置包括自动包装机、打印机、机械玩具、纺织机械和其他机械等。典型的机构要设计成使刚性构件相对基准构件产生所希望的运动。机构的运动设计即运动的综合,第一步常常是先设计整部机器。当考虑受力时,要提出动力学方面的问题,轴承的荷载、应力、润滑等类似的问题,而较大的问题是机器结构问题。运动学家把运动学定义为“研究机构的运动和创建机构的方法”。这个定义的第一部分就涉及运动学分析。已知一个机构,其构成的运动特性将由运动学分析来确定。叙述运动分析的任务包含机构的主要尺寸、构件间的相互连结和输入运动的技术特性或驱动方法。目的是要找出位移、速度、加速度、冲击或跳动(二阶加速度),和可能发生的各构件的高阶加速度以及所描述径迹和由某些构件来实现的运动。定义的第二部分可用以下两方面来解释:1.研究借助机构来产生给定运动的方法2.研究建造能产生给定运动机构的方法,在两个方案中,运动是给定的而机构是创建的。这就是运动综合的本质。这样运动综合涉及到为给定性能的机构的系统设计。运动综合方面又可归结为以下两类:1.类型综合。规定所要求的性能,怎样一种类型的机构才是合适的?(齿轮系,连杆机构?还是凸轮机构?)而机构应具有多少构件?需要多少个自由度?怎样的轮廓结构才是所希望的?等等。关于杆件数目和自由度的考虑通常被认为是类型综合中被称作为数量综合的一个分支领域。2.尺寸综合。运动综合的第二个主要类型是通过目标法来确定的最佳方法。尺寸综合试图确定机构的重要尺寸和起动位置,该机构是为着实现规定的任务和预期的性能而事先设想的。所谓重要的尺寸意思是指关于两杆、三杆等的长度或杆间距离,构件数和轴线间的角度,凸轮轮廓尺寸,凸轮随动件的直径,偏心距,齿轮配额等等。预想机构类型可能是曲柄滑块机构、四杆机构,带盘型从动件的凸轮机构,或者是以拓扑学方法而非因次分析法所确定的具有某种结构形状更为复杂的连杆机构。对于运动综合,惯例上有三个任务:函数生成,轨迹生成和运动生成。在函数生成机构中输入和输出构件的转动或移动必须是相互关联的。对于一个任意函数 y=f(x),一个运动综合的任务可能是设计一个连杆机构使输入和输出建立起关系以便使得在 xo<x<xn-1 的范围内输入按 x 运动,而输出按y=f(x)运动。在输入和输出件回转运动情况下,转角 φ 和 φ 分别是 x 和 y的线性模拟。当输入件回转到一个独立 x 值时,在一个“黑箱”的机构中,使输出构件转到相对应的由函数 y=f(x)决定的数值上。这可被认为是机械模拟计算机的最简单的情形。各种不同的机构都可以包含在这个“黑箱”内,然而对于任意函数的无误差生成,四杆机构是无能为力的,仅仅可能在有限精确度内与之相匹配。它广泛用于工业上,因为四杆机构在构建和维修上都是简单的。在轨迹生成机构中,在“浮动杆”上一个点要描画一条相对于一个固定坐标系确定的轨迹。如果该轨迹点是既要与时间相关又要与位置相关,该任务被称之为预定周期的轨迹生成。轨迹生成机构的一个例子就是设计来投掷棒球或网球的四杆机构。在这种情况下,点 P 的轨迹将是这样:在预定的位置捡起一个球,并在预定的时间周期内沿着预定的径迹把球传送出去,能达到合适的速度和方向。机械装置设计中有着许多情形,在这些情形中既要导引刚体通过一系列规定的、受限制的独立位置,又要在减少受限制而且独立的位置的数目时,对运动体的速度和(或)加速度加以约束,那是必要的。运动生成或刚体导引机构要求:一个完整的物体要被导引通过一预定的运动序列。作为被导引的物体通常是“浮动构件”的一部分,那不仅是预定点 P 的轨迹,也是通过该点并嵌入该物体内的线的转动。例如,该线可能代表自动化机械中的一个载体件,那是在载体件上的一个点具有一个预定的轨迹而该载体件又具有一个预定的角度方位。预定方式装料机的吊斗的运动是运动生成机构的另一个例子。吊斗端的轨迹是有极限的。因为其端口必须实现挖掘的运动轨迹,紧跟着要实现提升和倾泻的轨迹。吊斗的角度方位对保证斗中物料从正确的位置倾泻(倒)同样是重要的。凸轮和齿轮凸轮装置是把一种运动改变成另一种运动的方便装置。这种机器零件具有曲面或槽面,该曲面或槽面与从动件相配合并将运动传给从动件。凸轮的运动(通常是转动)被传递给从动件作摇动或移动,或两者均有。由于各种各样的几何体和大量的凸轮与从动件相结合,因此凸轮是一种极多功能的万用的机械零件。虽然凸轮和从动件可以为运动、轨迹和功能生成而设计,但其主要是用于利用凸轮和从动件作为功能生成构件。根据凸轮形状,最普遍的凸轮种类是:盘形传动凸轮(两维的,即平面的)和圆柱形凸
展开阅读全文
  微传网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:机械工程专业英语参考译文.doc
链接地址:https://www.weizhuannet.com/p-10036244.html
微传网是一个办公文档、学习资料下载的在线文档分享平台!

网站资源均来自网络,如有侵权,请联系客服删除!

 网站客服QQ:80879498  会员QQ群:727456886

copyright@ 2018-2028 微传网络工作室版权所有

     经营许可证编号:冀ICP备18006529号-1 ,公安局备案号:13028102000124

收起
展开