• / 25
  • 下载费用:10 金币  

高等数学公式、定理 最全版.doc

关 键 词:
高等数学公式、定理 最全版.doc
资源描述:
高等数学公式导数公式:基本积分表:三角函数的有理式积分: 222 11cos1sin udxtguxux , , , axactgxxctgln1)(logs)(es)(2 221)(1)(arcosinxarctgxxCaxaxdshcxadCxctgxctgddx)ln(lnsseesineco2222CaxadxaxadxCrctgtxxdctgCrcsinl21n1slsenilcs22Caxaxdax axaxdaIndInnn rcsinl22)(1cossi2 22222020一些初等函数: 两个重要极限:三角函数公式:·诱导公式:函数角 A sin cos tg ctg-α -sinα cosα -tgα -ctgα90°-α cosα sinα ctgα tgα90°+α cosα -sinα -ctgα -tgα180°-α sinα -cosα -tgα -ctgα180°+α -sinα -cosα tgα ctgα270°-α -cosα -sinα ctgα tgα270°+α -cosα sinα -ctgα -tgα360°-α -sinα cosα -tgα -ctgα360°+α sinα cosα tgα ctgα·和差角公式: ·和差化积公式: 2sini2cosco2sin2sincoictgtctg1)(1sincos)cos(ini xarthcxsechstxeshxxx1ln2)(l:2:2)双 曲 正 切双 曲 余 弦双 曲 正 弦 .59047182.)1(limsin0exx·倍角公式:·半角公式:  cos1insico12cos1insico12 scsssin tgtg ·正弦定理: ·余弦定理: RCBbAa2iiin Cab22·反三角函数性质: rctgxarctgxxxarcosrcsi  高阶导数公式——莱布尼兹(Leibniz)公式: )()()2()1()(0)()( !)1()! nknnnnnkk uvuknvuvuCv  中值定理与导数应用: 拉 格 朗 日 中 值 定 理 。时 , 柯 西 中 值 定 理 就 是当柯 西 中 值 定 理 :拉 格 朗 日 中 值 定 理 :xFfabfab)(F)()( )曲率: .1;0.)1(limMsM:.,13202aKayds MsKtgydxs 的 圆 :半 径 为直 线 :点 的 曲 率 : 弧 长 。:化 量 ;点 , 切 线 斜 率 的 倾 角 变点 到从平 均 曲 率 : 其 中弧 微 分 公 式 : 23313cos4cosiniintgt22 2221sicosin1cossinitgtt定积分的近似计算:   ba nnnba nnba n yyyyxff yyxf )](4)(2)[(3)( ]21)()( 13124011010 抛 物 线 法 :梯 形 法 :矩 形 法 :定积分应用相关公式: babadtfxfykrmFApsW)(1),221均 方 根 :函 数 的 平 均 值 : 为 引 力 系 数引 力 :水 压 力 :功 :空间解析几何和向量代数: 。代 表 平 行 六 面 体 的 体 积 为 锐 角 时 ,向 量 的 混 合 积 : 例 : 线 速 度 :两 向 量 之 间 的 夹 角 : 是 一 个 数 量 轴 的 夹 角 。与是向 量 在 轴 上 的 投 影 :点 的 距 离 :空 间 ,cos)(][ sin,cos,,Pr)(Pr ,cos)()()(2 2222121 21212121 bacbaccba rwvkjic babababjjj uABABzyxMzyxzyxzyx zyxzyx zyxzyxuu   ( 马 鞍 面 )双 叶 双 曲 面 :单 叶 双 曲 面 :、 双 曲 面 : 同 号 )(、 抛 物 面 :、 椭 球 面 :二 次 曲 面 : 参 数 方 程 :其 中空 间 直 线 的 方 程 : 面 的 距 离 :平 面 外 任 意 一 点 到 该 平、 截 距 世 方 程 :、 一 般 方 程 : , 其 中、 点 法 式 :平 面 的 方 程 : 13,2211 };,{,1302 ),(},{)()()(12222 0000 2200 0000 czbyaxqpzyxcba ptznymxpnmstpznymxCBADzyxdczbyaxDCBA zyxMCBAnz多元函数微分法及应用zyzx yxxyxyxFzyxF dFdddyvdvyudxvxzuxzfz tvtdttvu xffzdzududyxzd  , , 隐 函 数 +, , 隐 函 数隐 函 数 的 求 导 公 式 : 时 ,,当 :多 元 复 合 函 数 的 求 导 法全 微 分 的 近 似 计 算 : 全 微 分 : 0),( )()(,),(),(][)(, ),(),(2),(1),(1,)(,)( ,)(0),(yuGFJyvvyGFJyuxxxx GFvuFvJvuyxF vu  隐 函 数 方 程 组 :微分法在几何上的应用: ),(),(),(3 0)(,(,,2 )}(),()({1,0),( ,,{0),( 0)()()( (,)(000 0000 000 0000 zyxFzyxzyxF zyxFzyxzyxzyxnMzyxF GFGFTGzyxFztytxt tyxzytzytx zzyxzy  、 过 此 点 的 法 线 方 程 : :、 过 此 点 的 切 平 面 方 程、 过 此 点 的 法 向 量 : , 则 :上 一 点曲 面 则 切 向 量若 空 间 曲 线 方 程 为 :处 的 法 平 面 方 程 :在 点 处 的 切 线 方 程 :在 点空 间 曲 线 方向导数与梯度: 上 的 投 影 。在是单 位 向 量 。 方 向 上 的, 为, 其 中:它 与 方 向 导 数 的 关 系 是 的 梯 度 :在 一 点函 数 的 转 角 。轴 到 方 向为其 中 的 方 向 导 数 为 :沿 任 一 方 向在 一 点函 数 lyxflf ljieyxflf jyfxyxpyxfzl yffllfz),(grad snco),(grad,),(),( sinco),(),(   多元函数的极值及其求法:   不 确 定时 值时 , 无 极为 极 小 值为 极 大 值时 ,则 : , 令 :设 ,0),( ),(,),(,),(0),(),(202 0000BACyxA CyxfByxfAfff xyx重积分及其应用:    DzDyDx zyxDyDx DyxDD adfaFayxdfFayxdfF FMzo IyI dxydyxzAyxfzrdrfdf232232232 2222 )(,)(,)(, }{)0( ),(,)),(,),(1),()sin,co(),(  , , , 其 中 :的 引 力 :轴 上 质 点平 面 ) 对平 面 薄 片 ( 位 于 轴 对 于轴对 于平 面 薄 片 的 转 动 惯 量 : 平 面 薄 片 的 重 心 :的 面 积曲 面柱面坐标和球面坐标:    dvyxIdvzxIdvzyI MMyxM drrFddrrFdyzf vrxzrfzF dzrFdxyzfryx zyx    )()()( 1,1,1 sin),(sin),(),( siicosin),si,(),( ,),(,(,sinco 222 20),022 2, , 转 动 惯 量 : , 其 中 重 心 : , 球 面 坐 标 :其 中 : 柱 面 坐 标 :曲线积分:   )()()()],([),( ,,)(, 22 tyxdtttfdsyxf tytxLfL  特 殊 情 况 : 则 : 的 参 数 方 程 为 :上 连 续 ,在设 长 的 曲 线 积 分 ) :第 一 类 曲 线 积 分 ( 对 弧。, 通 常 设 的 全 微 分 , 其 中 :才 是 二 元 函 数时 ,=在 :二 元 函 数 的 全 微 分 求 积 注 意 方 向 相 反 !减 去 对 此 奇 点 的 积 分 , , 应。 注 意 奇 点 , 如=, 且内 具 有 一 阶 连 续 偏 导 数在,、 是 一 个 单 连 通 区 域 ;、 无 关 的 条 件 :平 面 上 曲 线 积 分 与 路 径 的 面 积 :时 , 得 到, 即 :当 格 林 公 式 :格 林 公 式 : 的 方 向 角 。上 积 分 起 止 点 处 切 向 量 分 别 为和, 其 中系 :两 类 曲 线 积 分 之 间 的 关 , 则 :的 参 数 方 程 为设标 的 曲 线 积 分 ) :第 二 类 曲 线 积 分 ( 对 坐0),(),(),( ),(· )0,(),(),(21· 212, )()( )cos(}(]),[)],([{),(),()(0),),0    yxdyxQyPyxu uQyPxQGyxPG ydxdxyADyPxQy QPQdyxdL dPttttPdyxQyPtLx DLDLLLL 曲面积分:   dsRQPRdxyQzPdyxzdzxyQdyzPxzxRdxyzR dxyzRdzxydyP dfszfzxyzy xyDDD )cosco(]),(,[),( ,, )],([),( ),(),(),(,1],[),( 22 系 :两 类 曲 面 积 分 之 间 的 关 号 。, 取 曲 面 的 右 侧 时 取 正 号 ;, 取 曲 面 的 前 侧 时 取 正 号 ;, 取 曲 面 的 上 侧 时 取 正 , 其 中 :对 坐 标 的 曲 面 积 分 :对 面 积 的 曲 面 积 分 :高斯公式:    dsAvsRQPdsAsnzRyQx dsRQPRdxyzPdyvzyxPnn i )cocos( .,0iv,di )coscos()(成 :因 此 , 高 斯 公 式 又 可 写 ,通 量 : 则 为 消 失的 流 体 质 量 , 若即 : 单 位 体 积 内 所 产 生散 度 : —通 量 与 散 度 :高 斯 公 式 的 物 理 意 义  斯托克斯公式——曲线积分与曲面积分的关系:     dstARzQdyPxARQPzyx yPxQRzPyRzQPxdxyzdy RdzyPxRPzQyR 的 环 流 量 :沿 有 向 闭 曲 线向 量 场旋 度 : , , 关 的 条 件 :空 间 曲 线 积 分 与 路 径 无上 式 左 端 又 可 写 成 : kjirot coscos)()()( 常数项级数: 是 发 散 的调 和 级 数 :等 差 数 列 :等 比 数 列 : nqqnn13212)(112 级数审敛法:散 。存 在 , 则 收 敛 ; 否 则 发、 定 义 法 : 时 , 不 确 定时 , 级 数 发 散时 , 级 数 收 敛, 则设 :、 比 值 审 敛 法 : 时 , 不 确 定时 , 级 数 发 散时 , 级 数 收 敛, 则设 : 别 法 ) :—根 植 审 敛 法 ( 柯 西 判、 正 项 级 数 的 审 敛 法nnnnsusUulim;31li21lim1211  。的 绝 对 值其 余 项, 那 么 级 数 收 敛 且 其 和如 果 交 错 级 数 满 足 —莱 布 尼 兹 定 理 :的 审 敛 法或交 错 级 数 1113243 ,0li )0,(   nnn n urrusuu绝对收敛与条件收敛: 时 收 敛1 时 发 散p 级 数 : 收 敛 ; 级 数 : 收 敛 ;发 散 , 而调 和 级 数 : 为 条 件 收 敛 级 数 。收 敛 , 则 称发 散 , 而如 果 收 敛 级 数 ;肯 定 收 敛 , 且 称 为 绝 对收 敛 , 则如 果 为 任 意 实 数 ;, 其 中1)1(1)()2()1(232pnpnnun 幂级数:01)3(lim)3(1111121032   RaaRRxxaxaxx nnnn 时 ,时 ,时 ,的 系 数 , 则是,, 其 中求 收 敛 半 径 的 方 法 : 设 称 为 收 敛 半 径 。, 其 中时 不 定时 发 散时 收 敛, 使在数 轴 上 都 收 敛 , 则 必 存 收 敛 , 也 不 是 在 全, 如 果 它 不 是 仅 在 原 点 对 于 级 数 时 , 发 散时 , 收 敛 于 函数展开成幂级数:      nnn nnxfxffxfx RffR xfxfxxf !)0(!2)0()(0)(0 lim,()!1 )(!)(!2)()10( 00)(2000时 即 为 麦 克 劳 林 公 式 : 充 要 条 件 是 :可 以 展 开 成 泰 勒 级 数 的余 项 :函 数 展 开 成 泰 勒 级 数 :一些函数展开成幂级数: )()!12()!53sin )1(1)((1)( 2   xnxxx nmmm  欧拉公式: 2sincosincoixiixiix exe 或三角级数: 。上 的 积 分 = 在任 意 两 个 不 同 项 的 乘 积正 交 性 : 。,,,其 中 , 0 ],[cos,in2cos,incs,i1 )in()i()( 100    xxxtAbaAxbattf nnn傅立叶级数:是 偶 函 数 ,余 弦 级 数 : 是 奇 函 数 ,正 弦 级 数 : ( 相 减 )( 相 加 ) 其 中 , 周 期  nxaxfnxdfab bffnxdfbfanxbxfnn nnnnnn cos2)(2,10cos)(20 i3,i124316246142853)3,1(si)(12,0co)si(2)(000222210    周期为 的周期函数的傅立叶级数:l2llnlnnnndxlfblfa llxblxxf )3,21(si)(1,0co2)si(2)(10   其 中 , 周 期微分方程的相关概念:即 得 齐 次 方 程 通 解 。 ,代 替分 离 变 量 , 积 分 后 将,,, 则设 的 函 数 , 解 法 :, 即 写 成程 可 以 写 成齐 次 方 程 : 一 阶 微 分 方 称 为 隐 式 通 解 。 得 : 的 形 式 , 解 法 :为: 一 阶 微 分 方 程 可 以 化可 分 离 变 量 的 微 分 方 程 或 一 阶 微 分 方 程 : uxyudxudxuxdyxu xyyfyCxFGdxfg dxfgyQdyPyf  )()(,,)()()( )()(0,,),( 一阶线性微分方程: )1,0()(2 )0)(, )(1 )()(nyxQPdxy eCdxeQCxxyPdx dxPPd,、 贝 努 力 方 程 :时 , 为 非 齐 次 方 程 ,当 为 齐 次 方 程 ,时当、 一 阶 线 性 微 分 方 程 :全微分方程: 通 解 。应 该 是 该 全 微 分 方 程 的 ,, 其 中 : 分 方 程 , 即 :中 左 端 是 某 函 数 的 全 微如 果 Cyxu yxQuyxPyxdP),( ),(),(0),(,)(二阶微分方程: 时 为 非 齐 次时 为 齐 次, 0)()()(2 xfyxQdPx二阶常系数齐次线性微分方程及其解法: 212,)(2 ,(*)0)(1,0(*)r yrqpqyp式 的 两 个 根、 求 出 的 系 数 ;式 中的 系 数 及 常 数 项 恰 好 是,, 其 中、 写 出 特 征 方 程 :求 解 步 骤 : 为 常 数 ;, 其 中 式 的 通 解 :出的 不 同 情 况 , 按 下 表 写、 根 据 (*),321r的 形 式,1r(*)式的通解两个不相等实根 )04(2qp xrxrecy21两个相等实根 r1)(21一对共轭复根 )(2241pqpirir, , )sinco2xeyx二阶常系数非齐次线性微分方程 型为 常 数 ;型 , 为 常 数, ]sin)(cos)([)(,xPxexffylm高等数学定理大全第一章 函数与极限 1、函数的有界性在定义域内有 f(x)≥K1 则函数 f(x)在定义域上有下界,K1 为下界;如果有 f(x)≤K2,则有上界,K2 称为上界。函数 f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一*)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界*)如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列 1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于 a,那么它的任一子数列也收敛于 a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列 1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限函数极限的定义中 00(或 A0(或 f(x)0),反之也成立。 函数 f(x)当 x→x0 时极限存在的充分必要条件是左极限右极限各自存在并且相等,即 f(x0-0)=f(x0+0),若不相等则 limf(x)不存在。 一般的说,如果 lim(x→∞)f(x)=c,则直线 y=c 是函数 y=f(x)的图形水平渐近线。如果 lim(x→x0)f(x)=∞,则直线 x=x0 是函数 y=f(x)图形的铅直渐近线。 4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果 F1(x)≥F2(x),而 limF1(x)=a,limF2(x)=b,那么 a≥b. 5、极限存在准则两个重要极限 lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn 且limyn=a,limzn=a,那么 limxn=a,对于函数该准则也成立。 单调有界数列必有极限。 6、函数的连续性设函数 y=f(x)在点 x0 的某一邻域内有定义,如果函数f(x)当 x→x0 时的极限存在,且等于它在点 x0 处的函数值 f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数 f(x)在点 x0 处连续。 不连续情形:1、在点 x=x0 没有定义;2、虽在 x=x0 有定义但 lim(x→x0)f(x)不存在;3、虽在 x=x0 有定义且 lim(x→x0)f(x)存在,但 lim(x→x0)f(x)≠f(x0)时则称函数在 x0 处不连续或间断。 如果 x0 是函数 f(x)的间断点,但左极限及右极限都存在,则称 x0 为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。 定理有限个在某点连续的函数的和、积、商(分母不为 0)是个在该点连续的函数。 定理如果函数 f(x)在区间 Ix 上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间 Iy={y|y=f(x),x∈Ix}上单调增加或减少且连续。反三角函数在他们的定义域内都是连续的。 定理(最大值最小值定理)在闭区间上连续的函数在该区间上一定有最大值和最小值。如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值。 定理(有界性定理)在闭区间上连续的函数一定在该区间上有界,即 m≤f(x)≤M.定理(零点定理)设函数 f(x)在闭区间[a,b]上连续,且 f(a)与 f(b)异号(即 f(a)×f(b)函数在该点处连续;函数 f(x)在点 x0 处连续≠在该点可导。即函数在某点连续是函数在该点可导的必要条件而不是充分条件。 3、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数。 4、函数 f(x)在点 x0 处可微=函数在该点处可导;函数 f(x)在点 x0 处可微的充分必要条件是函数在该点处可导。 第三章 中值定理与导数的应用 1、定理(罗尔定理):如果函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即 f(a)=f(b),那么在开区间(a,b)内至少有一点 ξ(a0,那么函数 f(x)在[a,b]上单调增加;(2)如果在(a,b)内 f’(x)0 时,函数 f(x)在 x0 处取得极小值;驻点有可能是极值点,不是驻点也有可能是极值点。 7、函数的凹凸性及其判定:设 f(x)在区间 Ix 上连续,如果对任意两点x1,x2 恒有 f[(x1+x2)/2][f(x1)+f(x1)]/2,那么称 f(x)在区间 Ix 上图形是凸的。 定理:设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内具有一阶和二阶导数,那么(1)若在(a,b)内 f’’(x)0,则 f(x)在闭区间[a,b]上的图形是凹的;(2)若在(a,b)内 f’’(x)可积。 定理:设 f(x)在区间[a,b]上有界,且只有有限个间断点,则 f(x)在区间[a,b]上可积。 3、定积分的若干重要性质性质:如果在区间[a,b]上 f(x)≥0 则∫abf(x)dx≥0.推论:如果在区间[a,b]上 f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx.推论:|∫abf(x)dx|≤∫ab|f(x)|dx.性质设 M 及 m 分别是函数 f(x)在区间[a,b]上的最大值和最小值,则 m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数 f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点 ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。 4、关于广义积分设函数 f(x)在区间[a,b]上除点 c(a可偏导。 5、多元函数可微的充分条件定理(充分条件):如果函数 z=f(x,y)的偏导数存在且在点(x,y)连续,则函数在该点可微分。 6.多元函数极值存在的必要、充分条件定理(必要条件):设函数 z=f(x,y)在点(x0,y0)具有偏导数,且在点(x0,y0)处有极值,则它在该点的偏导数必为零。 定理(充分条件):设函数 z=f(x,y)在点(x0,y0)的某邻域内连续且有一阶及二阶连续偏导数,又 fx(x0,y0)=0,fy(x0,y0)=0,令 fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,则 f(x,y)在点(x0,y0)处是否取得极值的条件如下:(1)AC-B20 时具有极值,且当 A0 时有极小值;(2)AC-B20 时没有极值;(3)AC-B2=0 时可能有也可能没有。 7、多元函数极值存在的解法:(1)解方程组 fx(x,y)=0,fy(x,y)=0 求的一切实数解,即可求得一切驻点。 (2)对于每一个驻点(x0,y0),求出二阶偏导数的值 A、B、C.(3)定出 AC-B2 的符号,按充分条件进行判定 f(x0,y0)是否是极大值、极小值。 注意:在考虑函数的极值问题时,除了考虑函数的驻点外,如果有偏导数不存在的点,那么对这些点也应当考虑在内。 第八章 二重积分 1、二重积分的一些应用曲顶柱体的体积曲面的面积(A=∫∫√[1+f2x(x,y)+f2y(x,y)]dσ) 平面薄片的质量平面薄片的重心坐标(x=1/A∫∫xdσ,y=1/A∫∫ydσ;其中 A=∫∫dσ 为闭区域 D 的面积。 平面薄片的转动惯量(Ix=∫∫y2ρ(x,y)dσ,Iy=∫∫x2ρ(x,y)dσ;其中 ρ(x,y)为在点(x,y)处的密度。 平面薄片对质点的引力(FxFyFz) 2、二重积分存在的条件:当 f(x,y)在闭区域 D 上连续时,极限存在,故函数 f(x,y)在 D 上的二重积分必定存在。 3、二重积分的一些重要性质性质如果在 D 上,f(x,y)≤ψ(x,y),则有不等式∫∫f(x,y)dxdy≤∫∫ψ(x,y)dxdy,特殊地由于-|f(x,y)|≤f(x,y)≤|f(x,y)|又有不等式|∫∫f(x,y)dxdy|≤∫∫|f(x,y)|dxdy.性质设 M,m 分别是 f(x,y)在闭区域 D 上的最大值和最小值,σ 是 D 的面积,则有 mσ≤∫∫f(x,y)dσ≤Mσ。 性质(二重积分的中值定理):设函数 f(x,y)在闭区域 D 上连续,σ 是 D的面积,则在 D 上至少存在一点(ξ,η)使得下式成立:∫∫f(x,y)dσ=f(ξ,η)*σ4、二重积分中标量在直角与极坐标系中的转换把二重积分从直角坐标系换为极坐标系,只要把被积函数中的 x,y 分别换成ycosθ、rsinθ,并把直角坐标系中的面积元素 dxd
展开阅读全文
  微传网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:高等数学公式、定理 最全版.doc
链接地址:https://www.weizhuannet.com/p-10039187.html
微传网是一个办公文档、学习资料下载的在线文档分享平台!

网站资源均来自网络,如有侵权,请联系客服删除!

 网站客服QQ:80879498  会员QQ群:727456886

copyright@ 2018-2028 微传网络工作室版权所有

     经营许可证编号:冀ICP备18006529号-1 ,公安局备案号:13028102000124

收起
展开