• / 35
  • 下载费用:10 金币  

《化工原理》课后习题解答.doc

关 键 词:
《化工原理》课后习题解答.doc
资源描述:
绪论P6: 1,2第一章:P72~76:4、6、7、9、20、21、22、23、23、24、25第二章:P123:2、4、5、7、8第三章:P183~184:1、2、3、5、7、8、9第五章:P271~272:1、2、3、4、5、7、8、9、10、11、12、13、20、21、22绪 论绪论P6: 1,21. 从基本单位换算入手,将下列物理量的单位换算为SI单位。(1)水的黏度μ=0.00856 g/(cms) (2)密度ρ=138.6 kgf ·s2/m4(3)某物质的比热容CP=0.24 BTU/(lb℉)(4)传质系数KG=34.2 kmol/(m2·h·atm) (5)表面张力σ=74 dyn/cm(6)导热系数λ=1 kcal/(m·h·℃) 解:本题为物理量的单位换算。(1)水的黏度 基本物理量的换算关系为1 kg=1000 g,1 m=100 cm则 (2)密度 基本物理量的换算关系为1 kgf=9.81 N,1 N=1 kg·m/s2则 (3)从附录二查出有关基本物理量的换算关系为 1 BTU=1.055 kJ,l b=0.4536 kg 则 (4)传质系数 基本物理量的换算关系为1 h=3600 s,1 atm=101.33 kPa则 (5)表面张力 基本物理量的换算关系为1 dyn=110–5 N 1 m=100 cm则 (6)导热系数 基本物理量的换算关系为1 kcal=4.1868103 J,1 h=3600 s则 2. 乱堆25cm拉西环的填料塔用于精馏操作时,等板高度可用下面经验公式计算,即式中 HE—等板高度,ft;G—气相质量速度,lb/(ft2·h);D—塔径,ft;Z0—每段(即两层液体分布板之间)填料层高度,ft;α—相对挥发度,量纲为一;μL—液相黏度,cP;ρL—液相密度,lb/ft3A、B、C为常数,对25 mm的拉西环,其数值分别为0.57、-0.1及1.24。试将上面经验公式中各物理量的单位均换算为SI单位。解:上面经验公式是混合单位制度,液体黏度为物理单位制,而其余诸物理量均为英制。经验公式单位换算的基本要点是:找出式中每个物理量新旧单位之间的换算关系,导出物理量“数字”的表达式,然后代入经验公式并整理,以便使式中各符号都变为所希望的单位。具体换算过程如下:(1)从附录查出或计算出经验公式有关物理量新旧单位之间的关系为 (见1)α量纲为一,不必换算1=1=16.01 kg/m2 (2) 将原符号加上“′”以代表新单位的符号,导出原符号的“数字”表达式。下面以HE为例:则 同理 (3) 将以上关系式代原经验公式,得整理上式并略去符号的上标,便得到换算后的经验公式,即第一章 流体流动第一章:P72~76:4、6、7、9、20、21、22、23、23、24、254.某储油罐中盛有密度为960 kg/m3的重油(如附图所示),油面最高时离罐底9.5 m,油面上方与大气相通。在罐侧壁的下部有一直径为760 mm的孔,其中心距罐底1000 mm,孔盖用14 mm的钢制螺钉紧固。若螺钉材料的工作压力为39.5106 Pa,问至少需要几个螺钉(大气压力为101.3103 Pa)? 解:由流体静力学方程,距罐底1000 mm处的流体压力为 作用在孔盖上的总力为 每个螺钉所受力为 因此 习题4附图6.如本题附图所示,水在管道内流动。为测量流体压力,在管道某截面处连接U管压差计,指示液为水银,读数R=100 mm,h=800 mm。为防止水银扩散至空气中,在水银面上方充入少量水,其高度可以忽略不计。已知当地大气压力为101.3 kPa,试求管路中心处流体的压力。习题6附图解:设管路中心处流体的压力为p根据流体静力学基本方程式,则 7.某工厂为了控制乙炔发生炉内的压力不超过13.3 kPa(表压),在炉外装一安全液封管(又称水封)装置,如本题附图所示。液封的作用是,当炉内压力超过规定值时,气体便从液封管排出。试求此炉的安全液封管应插入槽内水面下的深度h。习题7附图解:9.在实验室中,用内径为1.5 cm的玻璃管路输送20 ℃的70%醋酸。已知质量流量为10 kg/min。试分别用用SI和厘米克秒单位计算该流动的雷诺数,并指出流动型态。 解:(1)用SI单位计算查附录70%醋酸在20 ℃时, 故为湍流。 (2)用物理单位计算 , 11.如本题附图所示,高位槽内的水位高于地面7 m,水从φ108 mm4 mm的管道中流出,管路出口高于地面1.5 m。已知水流经系统的能量损失可按∑hf=5.5u2计算,其中u为水在管内的平均流速(m/s)。设流动为稳态,试计算(1)A-A截面处水的平均流速;(2)水的流量(m3/h)。 解:(1)A- A截面处水的平均流速 在高位槽水面与管路出口截面之间列机械能衡算方程,得 (1)式中 z1=7 m,ub1~0,p1=0(表压) z2=1.5 m,p2=0(表压),ub2 =5.5 u2代入式(1)得 (2)水的流量(以m3/h计) 习题11附图 习题12附图12.20 ℃的水以2.5 m/s的平均流速流经φ38 mm2.5 mm的水平管,此管以锥形管与另一φ53 mm3 mm的水平管相连。如本题附图所示,在锥形管两侧A、B处各插入一垂直玻璃管以观察两截面的压力。若水流经A、B两截面间的能量损失为1.5 J/kg,求两玻璃管的水面差(以mm计),并在本题附图中画出两玻璃管中水面的相对位置。 解:在A、B两截面之间列机械能衡算方程 式中 z1=z2=0, ∑hf=1.5 J/kg 故 13.如本题附图所示,用泵2将储罐1中的有机混合液送至精馏塔3的中部进行分离。已知储罐内液面维持恒定,其上方压力为1.0133105 Pa。流体密度为800 kg/m3。精馏塔进口处的塔内压力为1.21105 Pa,进料口高于储罐内的液面8 m,输送管道直径为φ68 mm 4 mm,进料量为20 m3/h。料液流经全部管道的能量损失为70 J/kg,求泵的有效功率。习题13附图解:在截面和截面之间列柏努利方程式,得 20.如本题附图所示,贮槽内水位维持不变。槽的底部与内径为100 mm的钢质放水管相连,管路上装有一个闸阀,距管路入口端15 m处安有以水银为指示液的U管压差计,其一臂与管道相连,另一臂通大气。压差计连接管内充满了水,测压点与管路出口端之间的直管长度为20 m。 (1)当闸阀关闭时,测得R=600 mm、h=1500 mm;当闸阀部分开启时,测得R=400 mm、h=1400 mm。摩擦系数可取为0.025,管路入口处的局部阻力系数取为0.5。问每小时从管中流出多少水(m3)? (2)当闸阀全开时,U管压差计测压处的压力为多少Pa(表压)。(闸阀全开时Le/d≈15,摩擦系数仍可取0.025。) 解:(1)闸阀部分开启时水的流量 在贮槽水面1-1,与测压点处截面2-2,间列机械能衡算方程,并通过截面2-2,的中心作基准水平面,得 (a)式中 p1=0(表) ub2=0,z2=0 z1可通过闸阀全关时的数据求取。当闸阀全关时,水静止不动,根据流体静力学基本方程知 (b)式中 h=1.5 m, R=0.6 m将已知数据代入式(b)得 将以上各值代入式(a),即 9.816.66=++2.13 ub2 解得 水的流量为 (88.45m3/h)88.45m3/h (2)闸阀全开时测压点处的压力在截面1-1,与管路出口内侧截面3-3,间列机械能衡算方程,并通过管中心线作基准平面,得 (c)式中 z1=6.66 m,z3=0,ub1=0,p1=p3 =将以上数据代入式(c),即 9.816.66=+4.81 ub2解得 再在截面1-1,与2-2,间列机械能衡算方程,基平面同前,得 (d)式中 z1=6.66 m,z2=0,ub10,ub2=3.51 m/s,p1=0(表压力) 将以上数值代入上式,则 解得 p2=3.30104 Pa(表压)3.30104 Pa(表压)21.10 ℃的水以500 l/min的流量流经一长为300 m的水平管,管壁的绝对粗糙度为0.05 mm。有6 m的压头可供克服流动的摩擦阻力,试求管径的最小尺寸。 解:由于是直径均一的水平圆管,故机械能衡算方程简化为 上式两端同除以加速度g,得 =/g=6 m(题给)即 ==69.81 J/kg =58.56 J/kg (a) 将ub代入式(a),并简化得 (b) λ与Re及e/d有关,采用试差法,设λ=0.021代入式(b),求出d=0.0904m。 下面验算所设的λ值是否正确: 10 ℃水物性由附录查得 ρ=1000 kg/m3,μ=130.7710-5 Pa 由e/d及Re,查得λ=0.021故 90.4mm 习题22附图 22.如本题附图所示,自水塔将水送至车间,输送管路用mm的钢管,管路总长为190 m(包括管件与阀门的当量长度,但不包括进、出口损失)。水塔内水面维持恒定,并高于出水口15 m。设水温为12 ℃,试求管路的输水量(m3/h)。 解:在截面和截面之间列柏努利方程式,得 (1)采用试差法,代入式(1)得,故假设正确,管路的输水量 81.61m3/h 习题23附图 23.本题附图所示为一输水系统,高位槽的水面维持恒定,水分别从BC与BD两支管排出,高位槽液面与两支管出口间的距离均为11 。AB管段内径为38 m、长为58 m;BC支管的内径为32 mm、长为12.5 m;BD支管的内径为26 mm、长为14 m,各段管长均包括管件及阀门全开时的当量长度。AB与BC管段的摩擦系数均可取为0.03。试计算(1)当BD支管的阀门关闭时,BC支管的最大排水量为多少(m3/h);(2)当所有阀门全开时,两支管的排水量各为多少(m3/h)?(BD支管的管壁绝对粗糙度,可取为0.15 mm,水的密度为1000 kg/m3,黏度为。) 解:(1)当BD支管的阀门关闭时,BC支管的最大排水量 在高位槽水面1-1,与BC支管出口内侧截面C-C,间列机械能衡算方程,并以截面C-C,为基准平面得 式中 z1=11 m,zc=0,ub1≈0,p1=pc故 =9.8111=107.9J/kg (a) (b) (c) (d) (e)将式(e)代入式(b)得 (f)将式(f)、(d)代入式(b),得 ubC=ub,BC,并以∑hf值代入式(a),解得 ub,BC=2.45 m/s故 VBC=36000.03222.45 m3/h=7.10 m3/h7.10 m3/h (2)当所有阀门全开时,两支管的排水量根据分支管路流动规律,有 (a)两支管出口均在同一水平面上,下游截面列于两支管出口外侧,于是上式可简化为 将值代入式(a)中,得 (b) 分支管路的主管与支管的流量关系为 VAB=VBC+VBD 上式经整理后得 (c)在截面1-1,与C-C’间列机械能衡算方程,并以C-C’为基准水平面,得 (d)上式中 z1=11 m,zC=0,ub1≈0,ub, C≈0上式可简化为 前已算出 因此 在式(b)、(c)、(d)中,ub,AB、ub,BC、ub,BD即λ均为未知数,且λ又为ub,BD的函数,可采用试差法求解。设ub,BD=1.45 m/s,则 查摩擦系数图得λ=0.034。将λ与ub,BD代入式(b)得 解得 将ub,BC、ub,BD值代入式(c),解得 将ub,AB、ub,BC值代入式(d)左侧,即 计算结果与式(d)右侧数值基本相符(108.4≈107.9),故ub,BD可以接受,于是两支管的排水量分别为 5.18 m3/h,2.77 m3/h24.在内径为300 mm的管道中,用测速管测量管内空气的流量。测量点处的温度为20 ℃,真空度为500 Pa,大气压力为98.66103 Pa。测速管插入管道的中心线处。测压装置为微差压差计,指示液是油和水,其密度分别为835 kg/m3和998 kg/m3 ,测得的读数为100 mm。试求空气的质量流量(kg/h)。解: 查附录得,20 ℃,101.3 kPa时空气的密度为1.203 kg/m3,黏度为1.8110-5 Pa,则管中空气的密度为查图1-28,得 1.159kg/h 25.在mm的管路上装有标准孔板流量计,孔板的孔径为16.4 mm,管中流动的是20 ℃的甲苯,采用角接取压法用U管压差计测量孔板两侧的压力差,以水银为指示液,测压连接管中充满甲苯。现测得U管压差计的读数为600 mm,试计算管中甲苯的流量为多少(kg/h)? 解:已知孔板直径do=16.4 mm,管径d1=33 mm,则 设Re>Reo,由教材查图1-30得Co=0.626,查附录得20 ℃甲苯的密度为866 kg/m3,黏度为0.610-3 Pas。甲苯在孔板处的流速为 甲苯的流量为 5427kg/h检验Re值,管内流速为 原假定正确。9.72104,原假定正确!第二章 流体输送机械第二章:P123:2、4、5、7、82.用离心泵(转速为2900 r/min)进行性能参数测定实验。在某流量下泵入口真空表和出口压力表的读数分别为60 kPa和220 kPa,两测压口之间垂直距离为0.5 m,泵的轴功率为6.7 kW。泵吸入管和排出管内径均为80 mm,吸入管中流动阻力可表达为(u1为吸入管内水的流速,m/s)。离心泵的安装高度为2.5 m,实验是在20 ℃,98.1 kPa的条件下进行。试计算泵的流量、压头和效率。解:(1)泵的流量由水池液面和泵入口真空表所在截面之间列柏努利方程式(池中水面为基准面),得到将有关数据代入上式并整理,得m/s则 m3/h=57.61 m3/h(2) 泵的扬程(3) 泵的效率=68%在指定转速下,泵的性能参数为:q=57.61 m3/h H=29.04 m P=6.7 kW η=68%57.61 m3/h,29.04m,η=68%4.用离心泵(转速为2900 r/min)将20 ℃的清水以60 m3/h的流量送至敞口容器。此流量下吸入管路的压头损失和动压头分别为2.4 m和0.61 m。规定泵入口的真空度不能大于64 kPa。泵的必需气蚀余量为3.5 m。试求(1)泵的安装高度(当地大气压为100 kPa);(2)若改送55 ℃的清水,泵的安装高度是否合适。解:(1) 泵的安装高度在水池液面和泵入口截面之间列柏努利方程式(水池液面为基准面),得即 m泵的安装高度应为3.51m(2)输送55 ℃清水的允许安装高度55 ℃清水的密度为985.7 kg/m3,饱和蒸汽压为15.733 kPa则 =m=2.31m原安装高度(3.51 m)需下降1.5 m(即:2.31m)才能不发生气蚀现象。3.51m,不合适,应下调1.2m(即:2.31m)5. 用离心泵将真空精馏塔的釜残液送至常压储罐。塔底液面上的绝对压力为32.5kPa(即输送温度下溶液的饱和蒸气压)。已知:吸入管路压头损失为1.46m,泵的必须汽蚀余量为2.3m,该泵安装在塔内液面下3.0m处。试核算该泵能否正常操作。假设该泵能够正常操作,则此时的安装高度应为:因为是真空精馏塔,所以入口处的压力即为饱和蒸气压:Pa=PvHg=-(2.3+0.5)-1.46=-4.26m7.用离心泵将水库中的清水送至灌溉渠,两液面维持恒差8.8 m,管内流动在阻力平方区,管路特性方程为 (qe的单位为m3/s)单台泵的特性方程为 (q的单位为m3/s)试求泵的流量、压头和有效功率。 解:联立管路和泵的特性方程便可求泵的工作点对应的q、H,进而计算Pe。管路特性方程 泵的特性方程 联立两方程,得到 q=4.5210–3 m3/s H=19.42 m则 W=861 Wq=4.5210–3 m3/s,861 W8. 对于习题7的管路系统,若用两台规格相同的离心泵(单台泵的特性方程与习题7相同)组合操作,试求可能的最大输水量。(1)如果两台泵并联:8.8+5.2105q2=28-4.2105(q/2)2解得:q=5.5410-3m3/s从而:H=24.77m(2)如果两台泵串联:8.8+5.2105q2=2[28-4.2105q2]解得:q=5.8910-3m3/s从而:H=26.85m所以两台串联时可以获得较大的输出功率,即:5.8910-3m3/s5.8910-3m3/s第三章 非均相混合物分离及固体流态化第三章:P183~184:1、2、3、5、7、8、91.颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg/m3,直径为0.04 mm的球形石英颗粒在20 ℃空气中自由沉降,沉降速度是多少?(2)密度为2 650 kg/m3,球形度的非球形颗粒在20 ℃清水中的沉降速度为0.1 m/ s,颗粒的等体积当量直径是多少?(3)密度为7 900 kg/m3,直径为6.35 mm的钢球在密度为1 600 kg/m3的液体中沉降150 mm所需的时间为7.32 s,液体的黏度是多少?解:(1)假设为滞流沉降,则: 查附录20 ℃空气,,所以,核算流型: 所以,原假设正确,沉降速度为0.1276 m/s。0.1276m/s(2)采用摩擦数群法依,,查出:,所以:1.81mm(3)假设为滞流沉降,得: 其中 将已知数据代入上式得: 核算流型 0.030812.用降尘室除去气体中的固体杂质,降尘室长5 m,宽5 m,高4.2 m,固体杂质为球形颗粒,密度为3000 kg/m3。气体的处理量为3000(标准)m3/h。试求理论上能完全除去的最小颗粒直径。(1)若操作在20 ℃下进行,操作条件下的气体密度为1.06 kg/m3,黏度为1.810-5 Pa•s。(2)若操作在420 ℃下进行,操作条件下的气体密度为0.5 kg/m3,黏度为3.310-5 Pa•s。解:(1)在降尘室内能够完全沉降下来的最小颗粒的沉降速度为: 设沉降在斯托克斯区,则: 核算流型: 原设滞流区正确,能够完全除去的最小颗粒直径为1.98510-5 m。(2)计算过程与(1)相同。完全能够沉降下来的最小颗粒的沉降速度为: 设沉降在斯托克斯区,则: 核算流型: 原设滞流区正确,能够完全除去的最小颗粒直径为4.13210-5 m。3.对2题中的降尘室与含尘气体,在427 ℃下操作,若需除去的最小颗粒粒径为10 μm,试确定降尘室内隔板的间距及层数。解:取隔板间距为h,令 则 (1) 10 μm尘粒的沉降速度 由(1)式计算h ∴ 层数取18层 核算颗粒沉降雷诺数: 核算流体流型: 18层,0.233m5.用标准型旋风分离器处理含尘气体,气体流量为0.4 m3/s、黏度为3.610-5 Pa•s、密度为0.674 kg/m3,气体中尘粒的密度为2 300 kg/m3。若分离器圆筒直径为0.4 m,(1) 试估算其临界粒径、分割粒径及压力降。(2)现在工艺要求处理量加倍,若维持压力降不变,旋风分离器尺寸需增大为多少?此时临界粒径是多少?(3)若要维持原来的分离效果(临界粒径),应采取什么措施?解:临界直径式中 , Ne=5 将有关数据代入,得 分割粒径为 压强降为 1078.74Pa(2)不变所以,处理量加倍后,若维持压力降不变,旋风分离器尺寸需增大,同时临界粒径也会增大,分离效率降低。7.9610-6m(3)若要维持原来的分离效果(临界粒径),可采用两台圆筒直径为0.4 m的旋风分离器并联使用。7.用10个框的板框过滤机恒压过滤某悬浮液,滤框尺寸为635 mm635 mm25 mm。已知操作条件下过滤常数为,, 滤饼与滤液体积之比为v=0.06。试求滤框充满滤饼所需时间及所得滤液体积。解:恒压过滤方程为,代入恒压过滤方程得 39.52min,1.680m3 8.在0.04 m2的过滤面积上以110-4 m3/s的速率进行恒速过滤试验,测得过滤100 s时,过滤压力差为3104 Pa;过滤600 s时,过滤压力差为9104 Pa。滤饼不可压缩。今欲用框内尺寸为635 mm635 mm60 mm的板框过滤机处理同一料浆,所用滤布与试验时的相同。过滤开始时,以与试验相同的滤液流速进行恒速过滤,在过滤压强差达到6104 Pa时改为恒压操作。每获得1 m3滤液所生成的滤饼体积为0.02 m3。试求框内充满滤饼所需的时间。 解:第一阶段是恒速过滤,其过滤时间θ与过滤压差之间的关系可表示为: 板框过滤机所处理的悬浮液特性及所用滤布均与试验时相同,且过滤速度也一样,因此,上式中a,b值可根据实验测得的两组数据求出: 3104=100a+b 9104=600a+b解得 a=120,b=1.8104即 恒速阶段终了时的压力差,故恒速段过滤时间为 恒速阶段过滤速度与实验时相同 根据方程3-71, 解得: , 恒压操作阶段过滤压力差为6104 Pa,所以 板框过滤机的过滤面积 滤饼体积及单位过滤面积上的滤液体积为 应用先恒速后恒压过滤方程 将K、qe、qR、q的数值代入上式,得: 解得 662.5s9. 在实验室用一个每边长0.16 m的小型滤框对碳酸钙颗粒在水中的悬浮液进行过滤试验。操作条件下在过滤压力差为275.8 kPa,浆料温度为20 ℃。已知碳酸钙颗粒为球形,密度为2 930 kg/m3。悬浮液中固体质量分数为0.072 3。滤饼不可压缩,每1 m3滤饼烘干后的质量为1 620 kg。实验中测得得到1 L滤液需要15.4 s,得到2 L滤液需要48.8 s。试求过滤常数,滤饼的空隙滤ε,滤饼的比阻r及滤饼颗粒的比表面积a。解:根据过滤实验数据求过滤常数已知,;,及代入恒压过滤方程式 联立以上两式,解得,滤饼的空隙滤 悬浮液的密度 以1 m3悬浮液为基准求ν滤饼体积, 滤液体积∴ 滤饼不可压缩时,所以,滤饼比阻为颗粒的比表面积 2.6481014m-2,3.955106m2/m3第五章 传热过程基础第五章:P271~272:1、2、3、4、5、11、12、131.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02 m2,厚度为0.02 m,实验测得电流表读数为0.5 A,伏特表读数为100 V,两侧表面温度分别为200 ℃和50 ℃,试求该材料的导热系数。 解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即 式中 将上述数据代入,可得0.333W/(m℃) 2.某平壁燃烧炉由一层400 mm厚的耐火砖和一层200 mm厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500 ℃,外表面温度为100 ℃,试求导热的热通量及两砖间的界面温度。设两砖接触良好,已知耐火砖的导热系数为,绝缘砖的导热系数为,。两式中的t可分别取为各层材料的平均温度。 解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即 (5-32)或 (5-32a)式中 代入λ1、λ2得 解之得 则 2017W/m2,977℃ 3.外径为159 mm的钢管,其外依次包扎A、B两层保温材料,A层保温材料的厚度为50 mm,导热系数为0.1 W /(m℃),B层保温材料的厚度为100 mm,导热系数为1.0 W /(m℃),设A的内层温度和B的外层温度分别为170 ℃和40 ℃,试求每米管长的热损失;若将两层材料互换并假设温度不变,每米管长的热损失又为多少? 解: 150W/mA、B两层互换位置后,热损失为131.5W/m 4.直径为mm的钢管用40 mm厚的软木包扎,其外又包扎100 mm厚的保温灰作为绝热层。现测得钢管外壁面温度为℃,绝热层外表面温度为10 ℃。软木和保温灰的导热系数分别为℃)和℃),试求每米管长的冷损失量。 解:此为两层圆筒壁的热传导问题,则 -24.53W/m5.在某管壳式换热器中用冷水冷却热空气。换热管为Φ25 mm2.5 mm的钢管,其导热系数为45 W/(m℃)。冷却水在管程流动,其对流传热系数为2 600 W/(m2℃),热空气在壳程流动,其对流传热系数为52 W/(m2℃)。试求基于管外表面积的总传热系数,以及各分热阻占总热阻的百分数。设污垢热阻可忽略。 解:由查得钢的导热系数 mm mm 壳程对流传热热阻占总热阻的百分数为 管程对流传热热阻占总热阻的百分数为 管壁热阻占总热阻的百分数为 50.6W/(m℃),97.3%,2.4%,0.3%7.在一传热面积为25 m2的单程管壳式换热器中,用水冷却某种有机溶液。冷却水的流量为28 000kg/h,其温度由25 ℃升至38 ℃,平均比热容为4.17 kJ/(kg℃)。有机溶液的温度由110 ℃降至65 ℃,平均比热容为1.72 kJ/(kg℃)。两流体在换热器中呈逆流流动。设换热器的热损失可忽略,试核算该换热器的总传热系数并计算该有机溶液的处理量。 解: kJ/(kg℃) 求 有机物 110 → 65 水 38 ← 25 ———————————————— 72 40 1.963104kg/h8.在一单程管壳式换热器中,用水冷却某种有机溶剂。冷却水的流量为10 000 kg/h,其初始温度为30 ℃,平均比热容为4.174 kJ/(kg℃)。有机溶剂的流量为14 000 kg/h,温度由180 ℃降至120 ℃,平均比热容为1.72 kJ/(kg℃)。设换热器的总传热系数为500 W/(m2℃),试分别计算逆流和并流时换热器所需的传热面积,设换热器的热损失和污垢热阻可以忽略。解: 冷却水的出口温度为逆流时并流时8.452m2 9.在一单程管壳式换热器中,用冷水将常压下的纯苯蒸汽冷凝成饱和液体。已知苯蒸汽的体积流量为1 600 m3/h,常压下苯的沸点为80.1 ℃,气化热为394 kJ/kg。冷却水的入口温度为20 ℃,流量为35 000 kg/h,水的平均比热容为4.17 kJ/(kg℃)。总传热系数为450 W/(m2℃)。设换热器的热损失可忽略,试计算所需的传热面积。 解:苯蒸气的密度为 解出 ℃求 苯 80.1 → 80.1 水 31.6 20 ———————————————— 48.5 60.119.3m210.在一单壳程、双管程的管壳式换热器中,水在壳程内流动,进口温度为30 ℃,出口温度为65 ℃。油在管程流动,进口温度为120 ℃。出口温度为75 ℃,试求其传热平均温度差。 解:先
展开阅读全文
  微传网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:《化工原理》课后习题解答.doc
链接地址:https://www.weizhuannet.com/p-11348257.html
微传网是一个办公文档、学习资料下载的在线文档分享平台!

网站资源均来自网络,如有侵权,请联系客服删除!

 网站客服QQ:80879498  会员QQ群:727456886

copyright@ 2018-2028 微传网络工作室版权所有

     经营许可证编号:冀ICP备18006529号-1 ,公安局备案号:13028102000124

收起
展开