• / 12

大学物理实验-温度传感器实验报告.doc

配套讲稿:

如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

特殊限制:

部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

关 键  词:
大学物理实验-温度传感器实验报告.doc
资源描述:

《大学物理实验-温度传感器实验报告.doc》由会员分享,可在线阅读,更多相关《大学物理实验-温度传感器实验报告.doc(12页珍藏版)》请在微传网上搜索。

1、关于温度传感器特性的实验研究摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现 NTC 电阻随温度升高而减小;PTC 电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN 节作为常用的测温元件,线性性质也较好。本实验还利用 PN 节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。关键词:定标 转化 拟合 数学软件EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR1.引言温度是一个历史很长的物理量,为了测量它,。

2、人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。2.热电阻的特性2.1 实验原理2.1.1Pt100 铂电阻的测温原理和其他金属一样,铂(Pt)的电阻值随温度变化而变化 ,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为 100Ω(即 Pt100) 。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650 ℃)最常用的一种温度检测器,本实验即。

3、采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。按 IEC751 国际标准,铂电阻温度系数 TCR 定义如下:TCR=(R100-R0)/(R0×100) (1.1)其中 R100 和 R0 分别是 100℃和 0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω) ,代入上式可得到 Pt100 的 TCR 为 0.003851。Pt100 铂电阻的阻值随温度变化的计算公式如下:Rt=R0[1+At+B +C(t-100) ] (-200℃t0℃) (1.2)𝑡2 𝑡3式中 Rt 表示在 t℃时的电阻值,系数 A、B、C 为:。

4、A=3.908× ;B=-5.802×10‒3℃‒1;C=-4.274× 。10‒7℃‒2 10‒12℃‒4因为 B、C 相较于 A 较小,所以公式可近似为:Rt=R0(1+At) (0℃t850℃ ) (1.3)为了减小导线电阻带来的附加误差,在本实验中,对用作标准测温器件的 Pt100 采用三线制接法。2.1.2 热敏电阻温度特性原理热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,它有负温度系数和正温度系数两种。负温度系数热敏电阻(NTC)的电阻率随着温度的升高而下降;而正温度系数热敏电阻(PTC)的电阻率随着温度的升高而升高。下面以 NTC 为例分析其温度特性原理。在一定的温度范围内,。

5、半导体的电阻率 和温度 T 之间有如下关系:𝜌(1.4)𝜌=𝐴1𝑒𝐵/𝑇式中 A1 和 B 是与材料物理性质有关的常数,T 为绝对温度。对于截面均匀的热敏电阻,其阻值 可用下式表示:𝑅𝑇(1.5)𝑅𝑇=𝜌𝑙𝑠将(1.4)式代入 (1.5)式,令 ,于是可得:𝐴=𝐴1𝑙/𝑠(1.6)𝑅𝑇=𝐴𝑒𝐵/𝑇对一固定电阻而言,A 和 B 均为常数。对 (1.6)式两边取对数,则有(1.7)ln𝑅𝑇=𝐵1𝑇+ln𝐴可以发现 与 成线性关系,在实验中测得各个温度 T 下的 值后,即可通过作图求出ln𝑅𝑇1𝑇 𝑅𝑇B 和 A 值,代入 (1.7)。

6、式,即可得到 的表达式。式中 为元件在温度 T(K)时的电阻值(Ω),𝑅𝑇 𝑅𝑇A 为在某一较大温度时元件的电阻值(Ω) ,B 为常数(K),其值与半导体材料的成分和制造方法有关。热敏电阻的温度系数 定义为:𝛼𝑇(1.8)𝛼𝑇=1𝑅𝑇𝑑𝑅𝑇𝑑𝑇2.2 实验内容(1)运用冰水混合物和沸水对 Pt100 进行标定;(2)以 Pt100 作为标准测温器件来定标实验室中的 NTC 温度传感器,温度范围控制在室温到100℃之间。基于实验数据给出该器件的电阻温度曲线,并研究温度系数随温度的变化关系;(3)用类似的方法研究 PTC 的电阻温度关系,结合实验数据寻找实验室提供的 。

7、PTC 器件的电阻温度关系的经验公式,并研究其温度系数。2.3 实验结果与讨论2.3.1Pt100 的定标观察 Pt100 的电阻关于温度的函数关系式,发现电阻与温度近似成线性关系。因此,将Pt100 分别浸入冰水混合物和沸水中,读出 Pt100 测得的温度,完成测量温度与实际温度之间的换算。经测量,有如下结果:实际温度/ ℃ 0 100测温元件示数/ ℃ 1.3 96.4由此得出 与 之间的关系:𝑡实 𝑡测(SI)𝑡实 =1.05𝑡测 ‒1.372.3.2NTC 温度特性研究将 Pt100 作为测温元件,改变温度,测量 NTC 的电阻变化,得到如下数据:/t测 ℃ /𝑡实 ℃ T/。

8、K R/kΩ ln𝑅 /1𝑇×10-325.6 25.51 298.66 4.545 8.4218 3.348330.0 30.13 303.28 3.844 8.2543 3.297335.0 35.38 308.53 3.170 8.0615 3.241240.0 40.63 313.78 2.640 7.8785 3.187045.0 45.88 319.03 2.202 7.6971 3.134550.0 51.13 324.28 1.838 7.5164 3.083855.0 56.38 329.53 1.546 7.3434 3.034660.0 61.63 334.78 1.。

9、305 7.1740 2.987065.0 66.88 340.03 1.100 7.0031 2.940970.0 72.13 345.28 0.941 6.8469 2.896275.0 77.38 350.53 0.807 6.6933 2.852880.0 82.63 355.78 0.6892 6.5355 2.810785.0 87.88 361.03 0.5927 6.3847 2.769990.0 93.13 366.28 0.5079 6.2303 2.730295.0 98.38 371.53 0.4389 6.0843 2.6916100 103.6 376.75 0.3。

10、827 5.9473 2.6543运用数学软件画出 关于 的图像,如下图所示:ln𝑅1𝑇由此可得:ln𝑅=3670𝑇 ‒3.80则 A= =0.0224,B=3670K.𝑒‒3.80(SI)𝑅𝑇=0.0224𝑒3670𝑇(SI)𝛼𝑇=1𝑅𝑇𝑑𝑅𝑇𝑑𝑇=‒3670𝑇2运用数学软件,可画出温度系数随温度的变化曲线:由图可得,NTC 的温度系数为负,说明 NTC 的电阻随温度的升高而减小,又温度系数的绝对值不断减小,说明 NTC 电阻的电阻减小幅度不断减小。2.3.3PTC 温度特性研究PTC 电阻关于温度的测量数据如下:/t测 ℃ /𝑡实 ℃ T/K R/Ω。

11、25.6 25.51 298.66 400.430.0 30.13 303.28 402.035.0 35.38 308.53 407.240.0 40.63 313.78 416.845.0 45.88 319.03 431.650.0 51.13 324.28 454.055.0 56.38 329.53 486.560.0 61.63 334.78 530.165.0 66.88 340.03 595.670.0 72.13 345.28 690.875.0 77.38 350.53 84380.0 82.63 355.78 108285.0 87.88 361.03 142090.0 。

12、93.13 366.28 233095.0 98.38 371.53 4720100 103.6 376.75 10490运用作图软件可将这些点在图上描绘出来:运用拟合的手段,可得出 PTC 电阻的大致表达式:可得:(SI)𝑅=293500‒1808𝑇+2.780𝑇2由图可得:PTC 的电阻随温度的升高而增大。3.热电偶温差电动势的研究3.1 实验原理将两种不同材料的导体或半导体 A 和 B 焊接起来,构成一个闭合回路。当导体 A 和 B 的两个接触点之间存在温差时,回路内便产生电动势,这种现象称为热电效应(或称塞贝克效应) 。热电偶就是利用这一效应来工作的,它能将对温度的测量直接转换成。

13、对电势的测量,是工业上最常用的温度检测元件之一。当组成热电偶的材料一定时,温差电动势 Ex 仅与两接点处的温度有关,并且与两接点的温差在一定的温度范围内有如下近似关系式:(1)𝐸𝑥=𝛼(𝑇ℎ‒𝑇𝑐)式中 α 称为温差电系数,对于不同金属组成的热电偶,α 是不同的,其数值上等于两接点温度差为 1℃时所产生的电动势。 Th 为工作端温度,Tc 为冷端的温度。为了测量温差电动势,就需要在图 2-1 的回路中接入电位差计,但测量仪器的引入不能影响热电偶原来的性质,例如不影响它在一定的温差 T-Tc 下应有的电动势 EX 值。要做到这一点,实验时应保证一定的条件。根据伏打定律,即在 A、B 。

14、两种金属之间插入第三种金属 C 时,若它与 A、B 的两连接点处于同一温度 Tc,则该闭合回路的温差电动势与上述只有 A、B 两种金属组成回路时的数值完全相同。所以,我们把 A、B 两根不同化学成份的金属丝的一端焊在一起,构成热电偶的热端(工作端) 。将另两端各与铜引线 (即第三种金属 C)焊接,构成两个同温度(Tc) 的冷端 (自由端)。铜引线与电位差计相连,这样就组成一个热电偶温度计,如图 2-2 所示。通常将冷端置于冰水混合物中,保持 Tc=0℃,将热端置于待测温度处,即可测得相应的温差电动势,再根据事先校正好的曲线或数据来求出温度 Th。热电偶温度计的优点是热容量小,灵敏度高,反应迅速。

15、,测温范围广,能直接把非电学量温度转换成电学量。因此,在自动测温、自动控温等系统中得到广泛应用。3.2 实验内容1. 以 Pt100 作为标准测温器件来研究实验室中热电偶的温度特性曲线,温度范围控制在室温到 100℃之间。2. 计算热电偶的温差电系数,比较热电偶和热敏电阻在温度特性方面的区别。3.3 实验结果与讨论通过不断改变热端温度,得到如下数据:/𝑡测 ℃ /𝑡实 ℃ /KΔ𝑇 𝐸𝑥/𝑚𝑉21.3 21.00 21.00 1.0325.0 24.88 24.88 1.1930.0 30.13 30.13 1.4135.0 35.38 35.38 1.6240.0 40.63 。

16、40.63 1.8345.0 45.88 45.88 2.0450.0 51.13 51.13 2.2555.0 56.38 56.38 2.4860.0 61.63 61.63 2.6865.0 66.88 66.88 2.9570.0 72.13 72.13 3.1475.0 77.38 77.38 3.3480.0 82.63 82.63 3.5685.0 87.88 87.88 3.8190.0 93.13 93.38 4.0195.0 98.38 98.38 4.23100 103.6 103.6 4.40绘制 - 图像:𝐸𝑥Δ𝑇可以发现,温差电动势随温度升高而增大,且与温度成。

17、正比关系,这一性质要优于 PTC 元件。且由图可以发现,温差电动势与温差并不是严格的正比关系。通过计算斜率,可大致得到温差电系数: 𝛼=4.12×10‒5 𝑉/𝐾4.PN 节正向压降与温度的关系4.1 实验原理PN 结温度传感器有灵敏度高、线性较好、热响应快和体小轻巧易集成化等优点。理想的 PN 结的正向电流 IF 和正向压降 VF 存在如下近关系式:(3.1)𝐼𝐹=𝐼𝑆𝑒𝑞𝑉𝐹𝑘𝑇其中 q 为电子电荷;k 为玻尔兹曼常数; T 为绝对温度; IS 为反向饱和电流。IF 是一个和PN 结材料的禁带宽度以及温度有关的系数,可以证明:(3.2)𝐼𝑆=𝐶𝑇𝑟𝑒‒。

18、𝑞𝑉𝑔(0)𝑘𝑇其中 C 是与结面积、掺质浓度等有关的常数,r 也是常数(r 的数值取决于少数载流子迁移率对温度的关系,通常取 r=3.4) ;Vg(0) 为绝对零度时 PN 结材料的带底和价带顶的电势差。将(3.2)式代入 (3.1)式,两边取对数可得:(3.3)𝑉𝐹=𝑉𝑔(0)‒(𝑘𝑞ln𝐶𝐼𝐹)𝑇‒𝑘𝑇𝑞ln𝑇𝑟=𝑉1+𝑉𝑛1其中 。𝑉1=𝑉𝑔(0)‒(𝑘𝑞ln𝐶𝐼𝐹)𝑇, 𝑉𝑛1=‒𝑘𝑇𝑞ln𝑇𝑟方程(3.3) 就是 PN 结正向压降作为电流和温度函数的表达式,它是 PN 结温度传感器的基本方程。令 IF=常。

19、数,则正向压降只随温度而变化,只不过在方程(3.3)中包含了非线性项Vn1。可以证明,在室温范围附近,Vn1 项所引起的线性误差很小,因此可以忽略。下面研究 PN 结的线性响应,设温度由 T1 变为 T 时,正向电压由 VF1 变为 VF,按理想的线性温度响应,VF 应取如下形式:(3.4)𝑉𝐹=𝑉𝐹1+∂𝑉𝐹1∂𝑇(𝑇‒𝑇1)由(3.3)式可得:(3.5)∂𝑉𝐹1∂𝑇=‒𝑉𝑔(0)‒𝑉𝐹1𝑇1 ‒𝑘𝑞𝑟所以(3.6)𝑉𝐹=𝑉𝐹1+(‒𝑉𝑔(0)‒𝑉𝐹1𝑇1 ‒𝑘𝑞𝑟)(𝑇‒𝑇1)综上所述,在恒流供电条件下,PN 结的 VF 。

20、对 T 的依赖关系取决于线性项 V1,即正向压降几乎随温度升高而线性下降,这就是 PN 结测温的理论依据。必须指出,上述结论仅适用于杂质全部电离,本征激发可以忽略的温度区间(对于通常的硅二极管来说,温度范围约-50℃ -150℃) 。如果温度低于或高于上述范围时,由于杂质电离因子减小或本征载流子迅速增加,VF-T 关系将产生新的非线性,这一现象说明 VF-T 的特性还随 PN 结的材料而异,对于宽带材料(如 GaAs,Eg 为 1.43eV)的 PN 结,其高温端的线性区则宽;而材料杂质电离能小(如 Insb)的 PN 结,则低温端的线性范围宽。对于给定的 PN 结,即使在杂质导电和非本征激发。

21、温度范围内,其线性度亦随温度的高低而有所不同,这是非线性项 Vn1 引起的。4.2 实验内容1.在九孔板上搭建电路,保持IF=100μA,测量0℃下的VF(0)。 2.设计方案,通过实验求得玻尔兹曼常数k,并和公认值比较。 3.以Pt100作为标准测温器件来研究实验室中PN结的正向压降与温度的关系曲线,绘制ΔV-T曲线,温度范围控制在室温到100℃之间。 4.计算被测PN结正向压降随温度变化的灵敏度S(mV/℃)。 5.估算被测PN结材料的禁带宽度,根据(3.5)式,略去非线性项,可得:Vg(0)=VF(0)+ △T=VF(0)+S·△T (3.7)𝑉𝐹(0)𝑇式中△T=-273.2K,。

22、即摄氏温标与凯尔文温标之差。VF(0)为 0℃时 PN 结正向压降。将实验所得的 Eg(0)=eVg(0)与公认值 Eg(0)=1.21eV 比较,求其误差。4.3 实验内容4.3.1 的测量𝑉𝐹(0)将 PN 节浸入冰水混合物中,测得 =1.6V.𝑉𝐹(0)4.3.2 波尔兹曼常数 k 的测量由 ,两边取对数得:𝐼𝐹=𝐼𝑆𝑒𝑞𝑉𝐹𝑘𝑇ln𝐼𝐹=ln𝐼𝑆+𝑞𝑉𝐹𝑘𝑇保持 T 不变,则 与 成一次函数关系。于是将 PN 节放入冰水中,测量 与 ,画出ln𝐼𝐹𝑉𝐹 𝐼𝐹𝑉𝐹关于 的图像,则有:ln𝐼𝐹 𝑉𝐹/mA𝐼𝐹 /mV。

23、𝑉𝐹0.08 609.60.09 613.10.10 615.20.11 618.50.12 620.30.13 622.50.14 624.10.15 626.10.16 626.90.17 629.10.18 630.30.19 631.3此图像斜率为:39.80,即为 的数值,由此得出:k=1.472 ,与标准值𝑞𝑘𝑇 ×10‒23比较相近。1.381×10‒234.3.3PN 节的正向压降与温度的关系/𝑡测 ℃ /mV𝑉𝐹21.3 555.925.4 546.130.4 534.235.1 522.740.1 510.445.2 498.350.1 486.755.2 474.060.1 462.366.6 446.370.5 436.775.5 423.880.5 411.786.6 398.390.5 385.995.4 373.8100.1 361.9与 T 的关系图为:𝑉𝐹4.3.4 灵敏度由图可得,S=-2.34 mV/ 。℃4.3. 的计算 𝑉𝑔( 0)𝑉𝑔(0)=1.14𝑒𝑉与标准值相差 5.8%。5.参考文献。

展开阅读全文
  微传网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:大学物理实验-温度传感器实验报告.doc
链接地址:https://www.weizhuannet.com/p-2997467.html
微传网是一个办公文档、学习资料下载的在线文档分享平台!

网站资源均来自网络,如有侵权,请联系客服删除!

 网站客服QQ:80879498  会员QQ群:727456886

copyright@ 2018-2028 微传网版权所有

     经营许可证编号:冀ICP备18006529号-1 ,公安局备案号:13028102000124

收起
展开