• / 14
  • 下载费用:10 金币  

函数最大最小值.ppt

关 键 词:
函数最大最小值.ppt
资源描述:
函数的最大值和最小值,江西省临川第一中学 游建龙(344100),知识和技能目标,理解函数的最值与极值的区别和联系 进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值 掌握用导数法求上述函数的最大值与最小值的方法和步骤,问题情境:在日常生活、生产和科研中,常常会遇到求什么条件下可以使成本最低、产量最大、效益最高等问题,这往往可以归结为求函数的最大值与最小值,如图,有一长80cm,宽60cm的矩形不锈钢薄板,用此薄板折成一个长方体无盖容器,要分别过矩形四个顶点处各挖去一个全等的小正方形,按加工要求,长方体的高不小于10cm且不大于20cm.设长方体的高为xcm,体积为Vcm3.问x为多大时,V最大?并求这个最大 值。,解:由长方体的高为xcm, 可知其底面两边长分别是 (80-2x)cm,(60-2x)cm,(10≤x≤20). 所以体积V与高x有以下函数关系 V=(80-2x)(60-2x)x =4(40-x)(30-x)x,分析函数关系可以看出,以前学过的方法在这个问题中较难凑效,这节课我们将学习一种很重要的方法,来求某些函数的最值,1.我们知道,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. 问题1:如果是在开区间(a,b)上情况如何? 问题2:如果[a,b]上不连续一定还成立吗?,,,,,如图为连续函数f(x)的 图象:,在闭区间[a,b]上连续函数f(x)的最大值、最小值分别是什么?分别在何处取得 ?,例1 求函数y= x4-2 x2+5在区间[-2,2]上的最大值与最小值. 解: y′=4 x3-4, 令y′=0,有4 x3-4x=0,解得: x=-1,0,1 当x变化时,y′,y的变化情况如下表:,从上表可知,最大值是13,最小值是4,例2:如图,有一长80cm,宽60cm的矩形不锈钢薄板,用此薄板折成一个长方体无盖容器,要分别过矩形四个顶点处各挖去一个全等的小正方形,按加工要求,长方体的高不小于10cm不大于20cm,设长方体的高为xcm,体积为Vcm3.问x为多大时,V最大? 并求这个最大值.,分析:建立V与x的函数的关系后,问题相当于求x为何值时,V最小,可用本节课学习的导数法加以解决.,以上分析,说明求函数f(x)在闭区间[a,b]上最值的关键是什么?,设函数f(x)在[a,b]上连续,在(a,b)内可导,求f (x)在[a,b]上的最大值与最小值的步骤如下: (1)求f (x)在(a,b)内的极值; (2)将f (x)的各极值与f (a)、f (b)比较,其中最大的一个是最大值,最小的一个是最小值.,归纳:,思考:求函数f(x)在[a,b]上最值过程中,判断极值往往比较麻烦,我们有没有办法简化解题步骤?,设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值与最小值的步骤可以改为: (1)求f(x)在(a,b)内导函数为零的点,并计算出其函数值; (2)将f(x)的各导数值为零的点的函数值与f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值,y′=4 x3-4x 令y′=0,有4x3-4x=0,解得: x=-1,0,1. x=-1时,y=4, x=0时,y=5,x=1时,y=4. 又 x=-2时,y=13, x=2时,y=13. ∴所求最大值是13,最小值是4,解法2:,课堂练习:,求下列函数在所给区间上的最大值与最小值: (1)y=x-x3,x∈[0,2] (2)y=x3+x2-x,x∈[-2,1],课堂小结:,3.利用导数求函数最值的关键是对可导函数使导数为零的点的判定.,1.在闭区间[a,b]上连续的函数f(x)在 [a,b]上必有最大值与最小值;,2.求闭区间上连续函数的最值的方法与步骤;,作业布置:P139 1、2、3,thank you,,江西省临川第一中学 游建龙(344100),
展开阅读全文
  微传网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:函数最大最小值.ppt
链接地址:https://www.weizhuannet.com/p-9831893.html
微传网是一个办公文档、学习资料下载的在线文档分享平台!

微传网博客

网站资源均来自网络,如有侵权,请联系客服删除!

 网站客服QQ:80879498  会员QQ群:727456886

copyright@ 2018-2028 微传网络工作室版权所有

     经营许可证编号:冀ICP备18006529号-1 ,公安局备案号:13028102000124

收起
展开