• / 31
  • 下载费用:10 金币  

命题逻辑基本概念1.ppt

关 键 词:
命题逻辑基本概念1.ppt
资源描述:
离散数学,张胜元福建师范大学数学与计算机科学学院,,本课程是现代数学的一个重要分支,是计算机科学基础理论的核心课程 。 研究的对象是离散数据结构及相互关系。 主要内容:数理逻辑、集合论及代数、图论和组合数学等 。,,离散数学与数学连续型、离散型、随机型 离散数学与计算机科学 数据结构、算法与软件理论、人工智能、数据挖掘、信息安全、 离散数学与我,数理逻辑,关于逻辑的故事: 上帝能否造出一块自己搬不动的石头? 理发师悖论 集合论悖论 …,,什么是逻辑?研究人的思维形式和规律的学科。由研究对象和方法的差异可分为:1. 形式逻辑2. 数理逻辑3. 思辨逻辑,,什么是数理逻辑?字面含义:数学理论的逻辑。逻辑是研究演绎(推理)规律的学科。广义理解:用数学方法研究演绎规律的学科。狭义理解:用数学方法研究数学中演绎规律和数学基础的学科。 我们只介绍命题逻辑和一阶逻辑,第一章 命题逻辑,§1 .1 命题与联结词,称能判断真假而不是可真可假的陈述句为命题。 作为命题的陈述句所表达得的判断结果称为命题的真值。 真值只取两个:真与假(T,F)。 真值为真的命题称为真命题。 真值为假的命题称为假命题。,说明,4是素数。x大于y。 充分大的偶数等于两个素数之和。 今天是星期二。请不要吸烟! 这朵花真美丽啊! 我正在说假话。,例 判断下列句子是否为命题。,是,假命题 是,真命题 不是,无确定的真值 是,真值客观存在 是,真值根据具体情况而定。 不是,疑问句 不是,祈使句 不是,感叹句 不是,悖论,命题和真值的符号化,用小写英文字母p,q,r…,pi ,qi ,ri …表示命题 用“1”表示真,用“0”表示假,不能被分解成更简单的陈述句,称这样的命题为简单命题或原子命题。 由简单陈述句通过联结词而成的陈述句,称这样的命题为复合命题。,命题常元我们把表示具体命题及表示常命题的p,q,r,s等与1,0统称为命题常元。 命题变元是以“真、假”或“1,0”为取值范围的变元,它未指出符号所表示的具体命题,可以代表任意命题。 指派当命题变元用一个特定命题取代时,该命题变元才能有确定的真值,从而成为一个命题。称对命题变元进行指派。,数理逻辑研究方法的主要特征是将论述或推理中的各种要素都符号化。即构造各种符号语言来代替自然语言。将联结词(connective)符号化,消除其二义性,对其进行严格定义。例如: 他学过英语或法语。 鱼香肉丝或西红柿炒鸡蛋,加一碗汤。,定义1.1 否定(NOT),设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作┐p,符号┐称作否定联结词,并规定┐p为真当且仅当p为假。,例如:p: 哈尔滨是一个大城市。 ┐p:哈尔滨是一个不大城市。┐p:哈尔滨不是一个大城市。,定义1.2 合取(AND),设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q的合取式,记作p∧q,∧称作合取联结词,并规定p∧q为真当且仅当p与q同时为真(遇假则假)。,使用合取联结词时要注意的两点: 描述合取式的灵活性与多样性。 自然语言中的“既……又……”、“不但……而且……”、“虽然……但是……”、“一面……一面……”等联结词都可以符号化为∧。 分清简单命题与复合命题。 不要见到“与”或“和”就使用联结词∧。,例 将下列命题符号化,吴颖既用功又聪明。 吴颖不仅用功而且聪明。 吴颖虽然聪明,但不用功。 张辉与王丽都是三好学生。 张辉与王丽是同学。,p: 吴颖用功。 q: 吴颖聪明。 r: 张辉是三好学生。 s: 王丽是三好学生。 t: 张辉与王丽是同学。,(1)p∧q (2)p∧q (3)q∧┐p (4)r∧s (5)t,解题要点: 正确理解命题含义。 找出原子命题并符号化。 选择恰当的联结词。,合取举例,p:我们去看电影。 q:房间里有十张桌子。 p∧q:我们去看电影并且房间里有十张桌子。,在数理逻辑中,关心的只是复合命题与构成复合命题的各原子命题之间的真值关系,即抽象的逻辑关系,并不关心各语句的具体内容(与语义无关)。,说明,定义1.3 析取(OR),设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q,∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假(遇真为真)。,自然语言中的“或”具有二义性,用它联结的命题有时具有相容性,有时具有排斥性,对应的联结词分别称为相容或和排斥或(排异或)。,说明,例 将下列命题符号化,张晓静爱唱歌或爱听音乐。 张晓静只能挑选202或203房间。 张晓静是江西人或安徽人。 他昨天做了二十或三十道习题。,设 p:张晓静爱唱歌,q:张晓静爱听音乐。 相容或,符号化为 p∨q 设t:张晓静挑选202房间, u:张晓静挑选203房间。 排斥或,符号化为:(t∧┐u)∨(┐t∧u) 设r:张晓静是江西人,
展开阅读全文
  微传网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:命题逻辑基本概念1.ppt
链接地址:https://www.weizhuannet.com/p-9838830.html
微传网是一个办公文档、学习资料下载的在线文档分享平台!

微传网博客

网站资源均来自网络,如有侵权,请联系客服删除!

 网站客服QQ:80879498  会员QQ群:727456886

copyright@ 2018-2028 微传网络工作室版权所有

     经营许可证编号:冀ICP备18006529号-1 ,公安局备案号:13028102000124

收起
展开